🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 시스템 구현과 유지보수
  • 공유된 가변 데이터
  • 왜 함수형 프로그래밍인가?
  • 함수형 프로그래밍이란 무엇인가?
  • 함수형 자바
  • 예외를 사용하지 않고 나눗셈 같은 표현하려면 어떻게 해야 할까?
  • 참조 투명성
  • 객체지향 프로그래밍과 함수형 프로그래밍
  • 재귀와 반복
  • 그러면 재귀는 쓸모가 없는 것일까?
  • 자바 8에서는 반복을 스트림으로 대체해서 변화를 피할 수 있다.
  • 요약

Was this helpful?

  1. STUDY
  2. JAVA 8 IN ACTION

13장 함수형 관점으로 생각하기

자바 8 인 액션 13장을 요약한 내용 입니다.

함수형 프로그래밍은 람다, 일급 함수와 관련 있으며 때로는 객체 변화를 제한하는 것이 함수형과 밀접한 관련을 갖는다.

시스템 구현과 유지보수

많은 프로그래머가 유지보수 중 코드 크래시 디버깅 문제를 가장 많이 겪게 된다. 코드 크래시는 예상하지 못한 변숫값 때문에 발생할 수 있다. 왜 그리고 어떻게 변숫값이 바뀐 걸까? 유지보수 중 이런 일이 얼마나 자주 일어나는지 생각해보라. 함수형 프로그래밍이 제공하는 부작용 없음과 불변성이라는 개념이 이 문제를 해결하는 데 도움을 준다.

공유된 가변 데이터

변수가 예상하지 못한 값을 갖는 이유는 결국 우리가 유지보수하는 시스템의 여러 메서드에서 공유된 가변 데이터 구조를 읽고 갱신하기 때문이다.

자신을 포함하는 클래스의 상태 그리고 다른 객체의 상태를 바꾸지 않으며 return 문을 통해서만 자신의 결과를 반환하는 메서드를 순수 메서드 또는 부작용 없는(side-effect free) 메서드라고 부른다.

구체적으로 부작용은 무엇일까?

  • 자료구조를 고치거나 필드에 값을 할당

  • 예외 발생

  • 파일에 쓰기 등의 I/O 동작 수행

불변 객체를 이용해서 부작용을 없애는 방법도 있다. 불변 객체는 복사하지 않고 공유할 수 있으며, 객체의 상태를 바꿀 수 없으므로 스레드 안전성을 제공한다.

왜 함수형 프로그래밍인가?

함수형 프로그래밍은 선언형 프로그래밍을 따르는 대표적인 방식이며 부작용이 없는 계산을 지향한다. 이전에 람다 표현식을 이용해서 보여준 것처럼 작업을 조합하거나 동작을 전달하는 등의 언어 기능은 선언형을 활용해서 자연스럽게 읽고 쓸 수 있는 코드를 구현하는 데 많은 도움을 준다.

선언형 프로그래밍이란? '어떻게'로 접근하는 방식을 선언형 프로그래밍이라고 부르기도 한다. 선언형 프로그래밍에서는 우리가 원하는 것이 무엇이고 시스템이 어떻게 그 목표를 달성할 것인지 등의 규칙을 정한다. 문제 자체가 코드로 명확하게 드러난다는 점이 선언형 프로그래밍의 강점이다.

함수형 프로그래밍이란 무엇인가?

함수는 0개 이상의 인수를 가지며, 한 개 이상의 결과를 반환하지만 부작용이 없어야 한다. '함수 그리고 if-then-else 등의 수학적 표현만 사용'라는 방식을 순수 함수형 프로그래밍이라고 하며 '시스템의 다른 부분에 영향을 미치지 않는다면 내부적으로는 함수형이 아닌 기능도 사용'하는 방식을 함수형 프로그래밍이라 한다.

함수형 자바

실질적으로 자바로는 완벽한 순수 함수형 프로그래밍을 구현하기 어렵다. 부작용을 일으키지 않는 어떤 함수나 메서드가 있는데, 다만 진입할 때 어떤 필드의 값을 증가시켰다가 빠져나올 때 필드의 값을 돌려놓는다고 가정하자. 단일 스레드로 실행되는 프로그램의 입장에서는 이 메서드가 아무 부작용을 일으키지 않으므로 이 메서드는 함수형이라 간주할 수 있다.

하지만 다른 스레드가 필드의 값을 확인한다든가 아니면 동시에 이 메서드를 호출하는 상황이 발생할 수 있다면 이 메서드는 함수형이 아니다. 메서드의 바디를 잠금으로써 이 문제를 해결할 수 있으며 따라서 이 메서드는 함수형이라고 할 수 있다. 결국 프로그램 입장에서 부작용이 사라졌지만 프로그래머 관점에서는 프로그램의 실행 속도가 느려지게 된 것이다.

함수나 메서드는 지역 변수만을 변경해야 함수형이라 할 수 있다. 그리고 함수나 메서드에서 참조하는 객체가 있다면 그 객체는 불변 객체여야 한다.

함수형이라면 함수나 메서드가 어떤 예외도 일으키지 않아야 한다. 예외가 발생하면 블랙박스 모델에서 return으로 결과를 반환할 수 없게 될 수 있기 때문이다.

예외를 사용하지 않고 나눗셈 같은 표현하려면 어떻게 해야 할까?

Optional<T>를 사용하면 이 문제를 해결할 수 있다. 하지만 모든 코드가 Optional을 사용하도록 반드시 고쳐야 하는 것은 아니며 함수형 프로그래밍과 순수 함수형 프로그래밍의 장단점을 실용적으로 고려해서 다른 컴포넌트에 영향을 미치지 않도록 지역적으로만 예외를 사용하는 방법도 고려할 수 있다.

순수 함수형 프로그래밍에서 예외를 처리할 수 있는 다른 방법은 무엇이 있을까?

참조 투명성

같은 인수로 함수를 호출했을 때 항상 같은 결과를 반환한다면 참조적으로 투명한 함수라고 표현한다.

참조 투명성은 프로그램 이해에 큰 도움을 준다. 또한 참조 투명성은 비싸거나 오랜 시간이 걸리는 연산을 기억화 또는 캐싱을 통해 다시 계산하지 않고 저장하는 최적화 기능도 제공한다.

기억화 또는 캐싱은 실제로 어떻게 구현할 수 있을까?

객체지향 프로그래밍과 함수형 프로그래밍

프로그래밍 형식을 스펙트럼으로 표현하자면 스펙트럼의 한 쪽 끝에는 모든 것을 객체로 간주하고 프로그램이 객체의 필드를 갱신하고, 메서드를 호출하고, 관련 객체를 갱신하는 방식으로 동작하는 익스트림 객체지향 방식이 위치한다. 스펙트럼의 반대쪽 끝에는 참조적 투명성을 중요시하는, 즉 변화를 허용하지 않는 함수형 프로그래밍 형식이 위치한다.

재귀와 반복

순수 함수형 프로그래밍 언어에서는 while, for 같은 반복문을 포함하지 않는다. 이러한 반복문 때문에 변화가 자연스럽게 코드에 스며들 수 있기 때문이다.

static long factorialRecursive(long n) {
    return n == 1 ? 1 : n * factorialRecursive(n-1);
}

무조건 반복보다는 재귀가 좋다고 주장은 주의해야 한다. 일반적으로 반복 코드보다 재귀 코드가 더 비싸다. 왜 그럴까? 재귀 팩토리얼의 입력값에 비례해서 메모리 사용량이 증가한다. 따라서 큰 입력값을 사용하면 다음처럼 StackOverflowError가 발생한다.

Exception in thread "main" java.lang.StackOverflowError

그러면 재귀는 쓸모가 없는 것일까?

물론 그렇지 않다. 함수형 언어에서는 꼬리 호출 최적화라는 해결책을 제공한다.

static long factorialTailRecursive(long n) {
    return factorialHeper(1, n);
}
static long factorialHelper(long acc, long n) {
    return n == 1 ? acc : factorialHelper(acc*n, n-1);
}

factorialHelper에서 재귀 호출이 가장 마지막에서 이루어지므로 꼬리 재귀다. 반면 이전의 factorialRecursive에서 마지막으로 수행한 연산은 n과 재귀 호출의 결과값의 곱셈이다.

중간 결과를 각각의 스택 프레임으로 저장해야 하는 일반 재귀와 달리 꼬리 재귀에서는 컴파일러가 하나의 스택 프레임을 재활용할 가능성이 생긴다.

자바 8에서는 반복을 스트림으로 대체해서 변화를 피할 수 있다.

또한 반복을 재귀로 바꾸면 더 간결하고, 부작용이 없는 알고리즘을 만들 수 있다. 실제로 재귀를 이용하면 좀 더 쉽게 읽고, 쓰고, 이해할 수 있는 예제를 만들 수 있다. 또한 약간의 실행 시간 차이보다는 프로그래머의 효율성이 더 중요할 때도 많다.

요약

  • 공유된 가변 자료구조를 줄이는 것은 장기적으로 프로그램을 유지보수하고 디버깅하는데 도움이 된다.

  • 함수형 프로그래밍은 부작용이 없는 메서드와 선언형 프로그래밍 방식을 지향한다.

  • 함수형 메서드는 입력 인수와 출력 결과만을 갖는다

  • 같은 인수값으로 함수를 호출했을 때 항상 같은 값을 반환하면 참조 투명을 갖는 함수다. while 루프 같은 반복문은 재귀로 대체할 수 있다.

  • 자바에서는 고전 방식의 재귀보다는 꼬리 재귀를 사용해야 추가적인 컴파일러 최적화를 기대할 수 있다.

Previous12장 새로운 날짜와 시간 APINext14장 함수형 프로그래밍 기법

Last updated 5 years ago

Was this helpful?

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0ae4a975-964d-428b-ad18-775141b04741/Untitled.png
https://s3-us-west-2.amazonaws.com/secure.notion-static.com/ee2fe6aa-95f8-422f-9a86-a3403cf48117/Untitled.png
https://s3-us-west-2.amazonaws.com/secure.notion-static.com/71bcf1c3-1812-41c2-8b60-4a66f1f337c8/Untitled.png