🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • Future
  • Future 제한
  • 비동기 API 구현
  • 팩토리 메서드 supplyAsync로 CompletableFuture 만들기
  • CompletableFuture로 비동기 호출 구현하기
  • 스트림 병렬화와 CompletableFuture 병렬화
  • 독립 CompletableFuture와 비독립 CompletableFuture 합치기
  • 요약

Was this helpful?

  1. STUDY
  2. JAVA 8 IN ACTION

11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍

자바 8 인 액션 11장을 요약한 내용 입니다.

멀티코어 프로세서가 등장하면서 애플리케이션을 효율적으로 실행하려면 이들 멀티코어를 온전히 활용할 수 있도록 소프트웨어를 구현해야 한다. 그러려면 하나의 큰 태스크를 작은 서브태스크로 분할해서 병렬로 실행해야 한다.

우리는 전통적인 스레드 방식 대신 자바 7에서 지원하는 포크/조인 프레임워크나 자바 8에서 지원하는 병렬 스트림으로 간단하고 효과적으로 병렬 실행을 달성하였다.

최근에는 모든 데이터를 자체적으로 처리하는 웹사이트나 네트워크 애플리케이션을 찾기가 어렵다. 그러면서 우리는 여러 웹 서비스를 이용해야 한다. 하지만 멀리 있는 서비스의 응답을 기다리는 동안 우리 계산이 블록되면서 수많은 CPU 사이클을 낭비하고 싶진 않다.

이 상황은 멀티태스크 프로그래밍의 두 가지 특징(병렬성과 동시성)을 잘 보여준다. 포크/조인 프레임워크와 병렬 스트림은 훌륭한 병렬화 도구다. 이들을 이용해서 하나의 동작을 여러 서브 동작으로 분할하고 각각의 서브 동작을 다른 코어, 다른 CPU, 심지어 다른 기기로 할당할 수 있다.

반면 병렬성이 아니라 동시성을 이용해야 하는 상황, 즉 하나의 CPU 사용을 가장 극대화할 수 있도록 느슨하게 연관된 여러 작업을 수행해야 하는 상황이라면 원격 서비스 결과를 기다리거나 데이터베이스 결과를 기다리면서 스레드를 블록하기 원치 않을 것이다.

병렬성과 동시성의 차이를 정확히 숙지하고 있는가?

Future

자바 5부터는 Future 인터페이스를 제공하고 있다. 비동기 계산을 모델링하는 데 Future를 이용할 수 있으며, Future는 계산이 끝났을 때 결과에 접근할 수 있는 레퍼런스를 제공한다. 시간이 걸릴 수 있는 작업을 Future 내부로 설정하면 호출자 스레드가 결과를 기다리는 동안 다른 유용한 작업을 수행할 수 있다. Future를 이용하려면 시간이 오래 걸리는 작업을 Callable 객체 내부로 감싼 다음에 ExecutorService에 제출해야 한다.

Future 제한

Future로 여러 케이스를 고려하여 구현하는 것은 쉽지 않다. 따라서 다음과 같은 선언형이 필요하다.

  • 두 개의 비동기 계산 결과를 하나로 합친다. 두 가지 계산 결과는 서로 독립적일 수 있으며 또는 두 번째 결과가 첫 번째 결과에 의존하는 상황일 수 있다.

  • Future 집합이 실행하는 모든 태스크의 완료를 기다린다.

  • Future 집합에서 가장 빨리 완료되는 태스크를 기다렸다가 결과를 얻는다(예를 들어 여러 태스크가 다양한 방식으로 같은 결과를 구하는 상황)

  • 프로그램적으로 Future를 완료시킨다.(즉, 비동기 동작에 수동으로 결과 제공)

  • Future 완료 동작에 반응한다(즉, 결과를 기다리면서 블록되지 않고 결과가 준비되었다는 알림을 받은 다음에 Future의 결과로 원하는 추가 동작을 수행할 수 있음)

비동기 API 구현

Future는 결과값의 핸들일 뿐이며 계산이 완료되면 get 메서드로 결과를 얻을 수 있다. getPriceAsync 메서드는 즉시 반환되므로 호출자 스레드는 다른 작업을 수행할 수 있다.

public Future<Double> getPriceAsync(String product) {
    CompletableFuture<Double> futurePrice = new CompletableFuture<>();
    new Thread( () -> {
        double price = calculatePrice(product); // 다른 스레드에서 비동기적으로 계산을 수행
        futurePrice.complete(price); // 오랜 시간이 걸리는 계산이 완료되면 Future에 값을 설정한다
    }).start();
    return futurePrice; // 계산 결과가 완료되길 기자리지 않고 Future를 반환한다
}

실제 가격을 계산할 다른 스레드를 만든 다음에 오래 걸리는 계산 결과를 기다리지 않고 결과를 포함할 Future 인스턴스를 바로 반환한다. 다음 코드에서 클라이언트가 getPriceAsync를 활용하는 예제를 살펴보자

Shop shop = new Shop("BestShop");
long start = System.nanoTime();
Future<Double> futurePrice = shop.getPriceAsync("my favorite product");
long invocationTime = ((System.nanoTime() - start) / 1_000_000);
System.out.println("Invocation returned after " + invocationTime + " msec");

doSomeThingElse();
try {
    double price = futurePrice.get(); // 가격 정보가 있으면 Future에서 가격 정보를 읽고, 가격 정보가 없으면 가격 정보를 받을때까지 블록한다. 
    System.out.println("Price is %.2f%n", price);
} catch (Exception e) {
    throw new RuntimeException(e);
} 
long retrivalTime = ((System.nanoTime() - start) / 1_000_000);
System.out.println("Price returned after " + retrivalTime + " msec");

상점은 비동기 API를 제공하므로 즉시 Future를 반환한다. 클라이언트는 반환된 Future를 이용해서 나중에 결과를 얻을 수 있다. 그 사이 클라이언트는 결과를 기다리면서 대기하지 않고 다른 작업을 처리할 수 있다. 나중에 클라이언트가 특별히 할일이 없으면 Future의 get 메서드를 호출한다. 이때 Future가 결과값을 가지고 있다면 Future에 포함된 값을 읽거나 아니면 값이 계산될 때까지 블록한다.

Invation returned after 43 msecs
Price is 123.26
Price returned after 1045 msecs

팩토리 메서드 supplyAsync로 CompletableFuture 만들기

지금까지 CompletableFuture를 직접 만들었다. 하지만 좀 더 간단하게 CompletableFuture를 만드는 방법도 있다.

public Future<Double> getPriceAsync(String product) {
    return CompletableFuture.supplyAsync(() -> calculatePrice(product));
}

supplyAsync 메서드는 Supplier를 인수로 받아서 CompletableFuture를 반환한다. ForkJoinPool의 Excutor 중 하나가 Supplier를 실행할 것이다. 하지만 두 번째 인수를 받는 오버로드 버전의 supplyAsync 메서드를 이용해서 다른 Executor를 선택적으로 전달할 수 있다.

CompletableFuture로 비동기 호출 구현하기

팩토리 메서드 supplyAsync로 CompletableFuture를 만들 수 있음을 배웠다. 배운 지식을 활용하자

public List<String> findPrices(String product) {
    // 첫번째 스트림 처리
    List<CompletableFuture<String>> priceFutures = 
        shops.stream()
        .map(shop -> CompletableFuture.supplyAsync(
            () -> shop.getName() + " price is " +
                        shop.getPrice(product)))
        .collect(Collectors.toList());

    // 두번째 스트림 처리
    return priceFutures.stream()
                    .map(CompletableFuture::join) // 모든 비동기 동작이 끝나길 기다린다
                    .collect(toList());
}

두 map 연산을 하나의 스트림 처리 파이프라인으로 처리하지 않고 두 개의 스트림 파이프라인으로 처리했다는 사실에 주목하자. 스트림 연산은 게으른 특성이 있으므로 하나의 파이프 라인으로 연산을 처리 했다면 모든 가격 정보 요청 동작이 동기적, 순차적으로 이루어지는 결과가 된다. CompletableFuture로 각 상점의 정보를 요청할 때 기존 요청 작업이 완료되어야 join이 결과를 반환 하면서 다음 상점으로 정보를 요청할 수 있기 때문이다.

스트림 처리를 분리함으로써 CompletableFuture를 리스트로 모은 다음에 다른 작업과는 독립적으로 각자의 작업을 수행하는 모습을 보여준다.

스트림 병렬화와 CompletableFuture 병렬화

지금까지 컬렉션 계산을 병렬화 하는 두 가지 방법을 살펴봤다. 하나는 병렬 스트림으로 변환해서 컬렉션을 처리하는 방법이고 다른 하나는 컬렉션을 반복하면서 CompletableFuture 내부의 연산으로 만드는 것이다. CompletableFuture를 이용하면 전체적인 계산이 블록되지 않도록 스레드풀의 크기를 조절할 수 있다.

그렇다면 우리는 어느 방법을 선택해야 할까?

  • I/O가 포함되지 않은 계산 중심의 동작을 실행할 때는 스트림 인터페이스가 가장 구현하기 간단하며 효율적일 수 있다.

  • 반면 작업이 I/O를 기다리는 작업을 병렬로 실행할 때는 CompletableFuture가 더 많은 유연성을 제공하며 대기/계산의 비율에 적합한 스레드 수를 설정할 수 있다.

블럭킹, 논블럭킹의 차이는 무엇인가? 동기, 비동기의 차이는 무엇인가?

독립 CompletableFuture와 비독립 CompletableFuture 합치기

독립적으로 실행된 두 개의 CompletableFuture 결과를 합쳐야 하는 상황이 종종 발생한다. 물론 첫 번째 CompletableFuture의 동작 완료와 관계없이 두 번째 CompletableFuture를 실행할 수 있어야 한다.

이런 상황에서는 thenCombine 메서드를 사용한다. thenCombine 메서드는 BiFunction을 두 번째 인수로 받는다. BiFunction은 두 개의 CompletableFuture 결과를 어떻게 합칠지 정의한다.

Future<Double> futurePriceInUSD = 
    CompletableFuture.supplyAsync(() -> shop.getPrice(product))
    .thenCombine(
        CompletableFuture.supplyAsync(
            () -> exchangeService.getRate(Money.EUR, Money.USD)),
            (price, rate) -> price * rate // USD, EUR의 환율 정보를 요청하는 독립적인 두 번째 태스크를 생성한다. 
    ));

Future와 CompletableFuture의 차이는 무엇일까?

요약

  • 한 개 이상의 원격 외부 서비스를 사용하는 긴 동작을 실행할 때는 비동기 방식으로 애플리케이션의 성능과 반응성을 향상시킬 수 있다.

  • 우리 고객에게 비동기 API를 제공하는 것을 고려해야 한다. CompletableFuture의 기능을 이용하면 쉽게 비동기 API를 구현할 수 있다.

  • CompletableFuture를 이용할 때 비동기 태스크에서 발생한 에러를 관리하고 전달할 수 있다.

  • 동기 API를 CompletableFuture로 감싸서 비동기적으로 소비할 수 있다.

  • 서로 독립적인 비동기 동작이든 아니면 하나의 비동기 동작이 다른 비동기 동작의 결과에 의존하는 상황이든 여러 비동기 동작을 조립하고 조합할 수 있다.

  • CompletableFuture에 콜백을 등록해서 Future가 동작을 끝내고 결과를 생산했을 때 어떤 코드를 실행하도록 지정할 수 있다.

  • CompletableFuture 리스트의 모든 값이 완료될 때까지 기다릴지 아니면 하나의 값만 완료되길 기다릴지 선택할 수 있다.

Previous10장 null 대신 OptionalNext12장 새로운 날짜와 시간 API

Last updated 5 years ago

Was this helpful?