🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 코드 가독성 개선
  • 익명 클래스를 람다 표현식으로 리팩토링하기
  • 람다 표현식을 메서드 레퍼런스로 리팩토링하기
  • 명령형 데이터 처리를 스트림으로 리팩토링하기
  • 람다로 객체지향 디자인 패턴 리팩토링하기
  • 전략 패턴
  • 템플릿 메서드 패턴
  • 옵저버 패턴
  • 의무 체인
  • 팩토리
  • 람다 테스팅
  • 디버깅
  • 람다와 스택 트레이스
  • 정보 로깅
  • 요약

Was this helpful?

  1. STUDY
  2. JAVA 8 IN ACTION

8장 리팩토링, 테스팅, 디버깅

자바 8 인 액션 8장을 요약한 내용 입니다.

코드 가독성 개선

자바 8에서는 코드 가독성에 도움을 주는 다음과 같은 기능을 새롭게 제공한다.

  • 코드의 장황함을 줄여서 쉽게 이해할 수 있는 코드를 구현할 수 있다.

  • 메서드 레퍼런스와 스트림 API를 이용해서 코드의 의도를 쉽게 표현할 수 있다.

익명 클래스를 람다 표현식으로 리팩토링하기

익명 클래스를 람다 표현식으로 리팩토링하는 이유가 뭘까?

익명 클래스가 얼마나 코드를 장황하게 만들고 쉽게 에러를 일으키는지 이해하였다. 이런 문제를 람다 표현식을 이용해서 간결하고 가독성이 좋은 코드를 구현할 수 있었다.

// 익명 클래스를 사용한 이전 코드
Runnable r1 = new Runnable() {
    public void run() {
        System.out.println("Hello");
    }
};

// 람다 표현식을 사용한 최신 코드
Runnable r2 = () -> System.out.println("Hello");

하지만 모든 익명 클래스를 람다 표현식으로 변환할 수 있는 것은 아니다.

  • 익명 클래스에서 사용한 this와 super는 람다 표현식에서 다른 의미를 갖는다. 익명 클래스에서 this는 익명 클래스 자신을 가리키지만 람다에서 this는 람다를 감싸는 클래스를 가리킨다.

  • 익명 클래스는 감싸고 있는 클래스의 변수를 가릴 수 있다. 하지만 람다 표현식으로는 변수를 가릴 수 없다.

    int a = 10;
    Runnable r1 = () -> {
      int a = 2; // 컴파일 에러!!!!
      System.out.println("Hello");
    };
    
    Runnable r2 = new Runnable() {
      public void run() {
          int a = 2;
          System.out.println("Hello");
      }
    };
  • 익명 클래스를 람다 표현식으로 바꾸면 콘텍스트 오버로딩에 따른 모호함이 초래 될 수 있다.

    익명 클래스는 인스턴스화할 때 명시적으로 형식이 정해지는 반면 람다의 형식은 콘텍스트에 따라 달라지기 때문이다. 아래 코드에서는 Task라는 Runnable과 같은 시그니처를 갖는 함수형 인터페이스를 선언한다.

    interface Task {
      public void execute();
    }
    
    public static void doSomething(Runnable r){ r.run(); }
    public static void doSomething(Task a){ a.execute(); }
    
    // Task를 구현하는 익명 클래스를 전달할 수 있다. 
    doSomething(new Testttt() {
      public void execute() {
          System.out.println("Danger danger!!");
      }
    });
    
    // 람다 표현식으로는 어떤 인터페이스를 사용하는지 알 수 없다. 
    doSomeThing(() -> System.out.println("Danger danger!!"));
    
    // 명시적 형변환을 이용해서 모호함을 제거할 수 있다. 
    doSomeThing((Task)() -> System.out.println("Danger danger!!"));

    넥빈즈와 IntelliJ 등을 포함한 대부분의 통합 개발환경에서 제공하는 리팩토링 기능을 이용하면 이와 같은 문제가 자동으로 해결된다.

람다 표현식을 메서드 레퍼런스로 리팩토링하기

람다 표현식 대신 메서드 레퍼런스를 이용하면 가독성을 높일 수 있다. 메서드 레퍼런스의 메서드명으로 코드의 의도를 명확하게 알릴 수 있기 때문이다.

칼로리에 따른 레벨 그룹을 구해보자

Map<CaloricLevel, List<Dish>> dishedByCaloricLevel = 
    menu.stream()
            .collect(
                groupingBy(dish -> {
                    if (dish.getCalories() <= 400) return CaloricLevel.DIET;
                    else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;                
                    else return CaloricLevel.FAT;
    }));


Map<CaloricLevel, List<Dish>> dishedByCaloricLevel = 
    menu.stream()
            .collect(
                groupingBy(dish::getCaloricLevel));

또한 comparing과 maxBy 같은 정적 헬퍼 메서드를 활용하는 것도 좋다.

inventory.sort(
    (Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight())); // 비교 구현에 신경써야 한다. 

inventory.sort(comparing(Apple::getWeight)); // 코드가 문제 자체를 설명한다.

sum, maximum 등 자주 사용하는 리듀싱 연산은 메서드 레퍼런스와 함께 사용할 수 있는 내장 헬퍼 메서드를 제공한다.

명령형 데이터 처리를 스트림으로 리팩토링하기

스트림은 쇼트서킷과 게으름이라는 강력한 최적화뿐 아니라 멀티코어 아키텍처를 활용할 수 있는 지름길을 제공한다.

하지만 명령형 코드의 break, continue, return 등의 제어 흐름문을 모두 분석해서 같은 기능을 수행하는 스트림 연산으로 유추해야 하므로 명령형 코드를 스트림 API로 바꾸는 것은 쉬운 일이 아니다.

람다 표현식을 이용하려면 함수형 인터페이스가 필요하다. 따라서 함수형 인터페이스를 코드에 추가해야 한다. 이번에는 조건부 연기 실행과 실행 어라운드 즉 두 가지 자주 사용하는 패턴으로 람다 표현식 리팩토링을 살펴본다.

다음은 내장 자바 Logger 클래스를 사용하는 예제다.

// 조건이 참일 경우에만 로그 메시지를 작성하도록 함
if (logger.isLoggable(Log.FINER)) {
    logger.finer("Problem: " + generateDiagnostic());
}

log 메서드는 logger의 수준이 적절하게 설정되어 있을 때만 인수로 넘겨진 람다를 내부적으로 실행한다. 다음은 log 메서드의 내부 구현 코드다.

public void log(Level level, Supplier<String> msgSupplier){
    if(logger.isLoggable(level)){
        log(level, msgSupplier.get()); // 람다 실행
    }
}


Logger.log(Level.FINER, () -> "Problem: " + generateDiagnostic());

이 기법으로 어떤 문제를 해결할 수 있을까?

만일 클라이언트 코드에서 객체 상태를 자주 확인하거나 객체의 일부 메서드를 호출하는 상황이라면 내부적으로 객체의 상태를 확인한 다음에 메서드를 호출하도록 새로운 메서드를 구현하는 것이 좋다. 그러면 코드 가독성이 좋아질 뿐 아니라 캡슐화도 강화된다.

매번 같은 준비, 종료 과정을 반복적으로 수행하는 코드가 있다면 이를 람다로 변환할 수 있다. 준비, 종료 과정을 처리하는 로직을 재사용함으로써 코드 중복을 줄일 수 있다.

람다로 객체지향 디자인 패턴 리팩토링하기

디자인 패턴은 공통적인 소프트웨어 문제를 설계할 때 재사용할 수 있는 검증된 청사진을 제공한다. 람다를 이용하면 이전에 디자인 패턴으로 해결하던 문제를 더 쉽고 간단하게 해결할 수 있다. 또한 람다 표현식으로 기존의 많은 객체지향 디자인 패턴을 제거하거나 간결하게 재구현할 수 있다.

전략 패턴

전략 패턴은 한 유형의 알고리즘을 보유한 상태에서 런타임에 적절한 알고리즘을 선택하는 기법이다. 다양한 기준을 갖는 입력값을 검증하거나, 다양한 파싱 방법을 사용하거나, 입력 형식을 설정하는 등 다양한 시나리오에 전략 패턴을 활용할 수 있다.

전략 패턴은 세 부분으로 구성된다.

  • 알고리즘을 나타내는 인터페이스

  • 다양한 알고리즘을 나타내는 한 개 이상의 인터페이스 구현 클래스

  • 전략 객체를 사용하는 한 개 이상의 클라이언트

텍스트 입력이 다양한 조건에 맞게 포맷되어 있는지 검증한다고 가정하자

public interface ValidationStrategy {
    boolean execute(String s);
}

public class IsAllLowerCase implements ValidationStrategy {
    public boolean execute(String s) {
        return s.matches("[a-z]+");
    }
}

public class IsNumeric implements ValidationStrategy {
    public boolean execute(String s) {
        return s.matches("\\d+");
    }
}

public class Validator {
    private final ValidationStrategy strategy;
    public Validator(ValidationStrategy strategy) {
        this.strategy = strategy;
    }

    public boolean validate(String s) {
        return this.strategy.execute(s);
    }
}

Validator numericValidator = new Validator(new IsNumeric());
boolean b1 = numericValidator.validate("aaaa"); // false

Validator lowerCaseValidator = new Validator(new IsAllLowerCase());
boolean b2 = lowerCaseValidator.validate("bbbb"); // true

람다 표현식 사용하기

Validator numericValidator = 
    new Validator((String s) -> s.matches("[a-z]+"));
boolean b1 = numericValidator.validate("aaaa"); // false

Validator lowerCaseValidator = 
    new Validator((String s) -> s.matches("\\d+"));
boolean b2 = lowerCaseValidator.validate("bbbb"); // true

위 코드에서 확인할 수 있듯이 람다 표현식을 이용하면 전략 디자인 패턴에서 발생하는 자잘한 코드를 제거할 수 있다.

템플릿 메서드 패턴

템플릿 메서드 패턴이란 알고리즘의 개요를 제시한 다음에 알고리즘의 일부를 고칠 수 있는 유연함을 제공해야 할 때 템플릿 메서드 디자인 패턴을 사용한다. 다시 말해 '이 알고리즘을 사용하고 싶은데 그대로는 안 되고 조금 고쳐야 하는'상황에 적합하다.

다음은 온라인 뱅킹 애플리케이션의 동작을 정의하는 추상 클래스다.

abstract class OnlineBanking {
    public void processCustomer(int id) {
        Customer c = Database.getCustomerWithId(id);
        makeCustomerHappy(c);
    }

    abstract void makeCustomerHappy(Customer c);
}

각각의 지점은 OnlineBanking 클래스를 상속받아 makeCustomerHappy 메서드가 원하는 동작을 수행하도록 구현할 수 있다.

람다 표현식 사용하기

public class OnlineBankingLamda {
    public void processCustomer(int id, Consumer<Customer> makeCustomerHappy) {
        Customer c = Database.getCustomerWithId(id);
        makeCustomerHappy.accept(c);
    }
}

new OnlineBankingLamda().processCustomer(1337, (Customer c) -> 
    System.out/println("Hello "+ c.getName());

옵저버 패턴

어떤 이벤트가 발생했을 때 한 객체(주제subject)가 다른 객체 리스트(옵저버)에 자동으로 알림을 보내야 하는 상황에서 옵저버 디자인 패턴을 사용한다. 예를 들어 주식의 가격 변동에 반응하는 다수의 거래자 예제에서도 옵저버 패턴을 사용할 수 있다.

interface Observer {
    void notify(String tweet);
}

// 트윗에 포함된 다양한 키워드에 다른 동작을 수행할 수 있는 여러 옵저버를 정의할 수 있다. 
class NYTimes implements Observer {
    public void notify(String tweet) {
        if(tweet != null && tweet.contains("money")) {
            System.out.println("Breaking news in NY! " + tweet);
        }
    }
}

class Guardian implements Observer {
    public void notify(String tweet) {
        if(tweet != null && tweet.contains("queen")) {
            System.out.println("Yet another new in London... " + tweet);
        }
    }
}

class LeMonde implements Observer {
    public void notify(String tweet) {
        if(tweet != null && tweet.contains("wine")) {
            System.out.println("Today cheese, wine and news! " + tweet);
        }
    }
}

// Subject 인터페이스의 정의다. 
interface Subject { 
    void registerObserver(Observer o);
    void notifyObservers(String tweet);
}


class Feed implements Subject {
    private final List<Observer> observers = new ArrayList<>();

    // 새로운 옵저를 등록한다. 
    public void registerObserver(Observer o) {
        this.observers.add(o);
    }

    // 트윗을 등록한 옵저들에게 알린다. 
    public void notifyObservers(String tweet) {
        observers.forEach(o -> o.notify(tweet));
    }
}

Feed f = new Feed();

// 구독할 옵저버를 등록한다. 
f.registerObserver(new NYTimes());
f.registerObserver(new Guardian());
f.registerObserver(new LeMonde());

// 옵저버들에게 메시지를 전송한다. 
f.notifyObservers("The queen said her favorite book is Java 8 in Action!");

람다 표현식 사용하기

Feed f = new Feed();

f.registerObserver((String tweet) {
    if(tweet != null && tweet.contains("money")) {
        System.out.println("Breaking news in NY! " + tweet);
    }
});

f.registerObserver((String tweet) {
    if(tweet != null && tweet.contains("queen")) {
        System.out.println("Yet another new in London... " + tweet);
    }
});

이 예제에서는 실행해야 할 동작이 비교적 간단하므로 람다 표현식으로 불필요한 코드를 제거하는 것이 바람직하다. 하지만 옵저버가 상태를 가지며, 여러 메서드를 정의하는 등 복잡하다면 람다 표현식보다 기존의 클래스 구현방식을 고수하는 것이 바람직할 수도 있다.

의무 체인

작업처리 객체의 체인을 만들 때는 의무 체인 패턴을 사용한다. 한 객체가 어떤 작업을 처리한 다음에 다른 객체로 결과를 전달하고, 다른 객체도 해야 할 작업을 처리한 다음에 또 다른 객체로 전달하는 식이다.

일반적으로 다음으로 처리할 객체 정보를 유지하는 필드를 포함하는 작업 처리 추상 클래스로 의무 체인 채턴을 구성한다.

public abstract class ProcessingObject<T> {
    protected ProcessingObject<T> successor;

    public void setSuccessor(ProcessingObject<T> successor) {
        this.successor = successor;
    }
    public T handle(T input) {
        T r = handleWork(input);
        if (successor != null) {
            return successor.handle(r);
        }
        return r;
    }

    abstract protected T handleWork(T input);
}

public class HeaderTextProcessing extends ProcessingObject<String> {
    public String handleWork(String text) {
        return "From Raoul, Mario and Alan: " + text);
    }
}

public class SpellCheckerProcessing extends ProcessingObject<String> {
    public String handleWork(String text) {
        return text.replaceAll("labda", "lambda");
    }
}

ProcessingObject<String> p1 = new HeaderTextProcessing();
ProcessingObject<String> p2 = new SpellCheckerProcessing();

p1.setSuccessor(p2);

String result = p1.handle("Aren't ladas really sexy?!!");
System.out.println(result); 
// From Raoul, Mario and Alan: Aren't lambda really sexy?!!

람다 표현식 사용하기

작업처리 객체를 Function, 더 정확히 표현하자면 UnaryProcessingObject 형식의 인스턴스로 표현할 수 있다.

public abstract class UnaryProcessingObject<T> {
    abstract protected T handleWork(T input);
}

UnaryProcessingObject<String> headerProcessing = 
    (String text) -> "From Raoul, Mario and Alan: " + text;

UnaryProcessingObject<String> spellCheckerProcessing = 
    (String text) -> text.replaceAll("labda", "lambda");

Function<String, String> pipeline = 
    headerProcessing.andThen(spellCheckerProcessing);

String result = pipeline.apply("Aren't ladas really sexy?!!");

팩토리

인스턴스화 로직을 클라이언트에 노출하지 않고 객체를 만들 때 팩토리 디자인 패턴을 사용한다. 예를 들어 우리가 은행에서 일하고 있는데 은행에서 취급하는 대출, 채권, 주식 등 다양한 상품을 만들어야 한다고 가정하자

public class ProductFactory {
    public static Product createProduct(String name) {
        switch (name) {
            case "loan": return new Loan();
            case "stock": return new Stock();
            case "bond": return new Bond();
            default: throw new RuntimeException("No such product " + name);
        }
    }
}

람다 표현식 사용하기

Supplier<Product> loanSupplier = Loan::new;
Loan loan = loanSupplier.get();

final static Map<String, Supplier<Product>> map = new HashMap<>();
static {
    map.put("loan", Loan::new);
    map.put("stock", Stock::new);
    map.put("bond", Bond::new);
}

public static Product createProduct(String name) {
    Supplier<Product> p = map.get(name);
    if(p != null) return p.get();
    throw new IllegalArgumentException("No such product " + name);
}

예제는 생성자 파라미터가 없을 경우라 간단하지만 생성자에 파라미터가 필요하다면 인터페이스로는 이 문제를 해결할 수 없다.

람다 테스팅

람다는 익명(결국 익명 함수)이므로 테스트 코드 이름을 호출할 수 없다.

따라서 필요하다면 람다를 필드에 저장해서 재사용할 수 있으며 람다의 로직을 테스트할 수 있다.

public class Point {
    pubic final static Comparator<Point> compareByXAndThenY =
        comparing(Point::getX).thenComparing(Point::getY);
        ...
}

@Test
public void testComparingTwoPoints() throws Exception {
    Point p1 = new Point(10, 15);
    Point p2 = new Point(10, 20);
    int result = Point.compareByXAndThenY.compare(p1, p2);
    assertEquals(-1, result);
}

람다 표현식을 사용하는 메서드의 동작을 테스트함으로써 람다를 공개하지 않으면서도 람다 표현식을 검증할 수 있다.

디버깅

문제가 발생한 코드를 디버깅할 때 개발자는 다음 두 가지를 가장 먼저 확인해야 한다.

  • 스택 트레이스

  • 로깅

하지만 람다 표현식과 스트림은 기존의 디버깅 기법을 무력화한다.

람다와 스택 트레이스

람다 표현식은 이름이 없기 때문에 조금 복잡한 스택 트레이스가 생성된다. 따라서 람다 표현식과 관련한 스택 트레이스는 이해하기 어려울 수 있다는 점을 염두에 두자. 이는 미래의 자바 컴파일러가 개션해야 할 부분이다.

정보 로깅

스트림 파이프라인에 적용된 각각의 연산(map, filter, limit)이 어떤 결과를 도출하는지 확인할 수 있다면 좋을 것 같다.

바로 peek이라는 스트림 연산을 활용할 수 있다. peek은 스트림의 각 요소를 소비한 것처럼 동작을 실행한다. 하지만 forEach처럼 실제로 스트림의 요소를 소비하지는 않는다. peek은 자신이 확인한 요소를 파이프라인의 다음 연산으로 그대로 전달한다.

List<Integer> result = 
    numbers.stream()
        .peek(x -> System.out.println("From stream: " + x))
        .map(x -> x + 17)
        .peek(x -> System.out.println("after map: " + x))
        .filter(x -> x % 2 == 0)
        .peek(x -> System.out.println("after filter: " + x))
        .lmit(3)
        .peek(x -> System.out.println("after limit: " + x))
        .collect(toList());

// rersult

from stream: 2
after map: 19
from stream: 3
after map: 20
after filter: 20
after limit: 20
from stream: 4
after map: 21
from stream: 5
after map: 22
after filter: 22
after limit: 22

요약

  • 람다 표현식으로 가독성이 좋고 더 유연한 코드를 만들 수 있다.

  • 익명 클래스는 람다 표현식으로 바꾸는 것이 좋다. 하지만 이때 this, 변수 섀도 등 미묘하게 의미상 다른 내용이 있음을 주의하자. 메서드 레퍼런스로 람다 표현식보다 더 가독성이 좋은 코드를 구현할 수 있다.

  • 반복적으로 컬렉션을 처리하는 루틴은 스트림 API로 대체할 수 있을지 고려하는 것이 좋다.

  • 람다 표현식으로 전략, 템플릿 메서드, 옵저버, 의무 체인, 팩토리 등의 객체지향 디자인 패턴에서 발생하는 불필요한 코드를 제거할 수 있다.

  • 람다 표현식도 단위 테스트를 수행할 수 있다. 하지만 람다 표현식 자체를 테스트하는 것보다는 람다 표현식이 사용되는 메서드의 동작을 테스트하는 것이 바람직하다.

  • 람다 표현식을 사용하면 스택 트레이스를 이해하기 어려워진다.

  • 스트림 파이프라인에서 요소를 처리할 때 peek 메서드로 중간값을 확인할 수 있다.

Previous7장 병렬 데이터 처리와 성능Next9장 디폴트 메서드

Last updated 4 years ago

Was this helpful?