🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 프록시
  • 프록시 기초
  • 프록시의 특징
  • 프록시와 식별자
  • 즉시 로딩과 지연 로딩
  • 즉시 로딩
  • 지연 로딩
  • JPA 기본 페치 전략
  • 컬렉션에 FetchType.EAGER 사용 시 주의점
  • 영속성 전이: CASCADE
  • 영속성 전이: 저장
  • CASCADE의 종류
  • 고아 객체
  • 영속성 전이 + 고아 객체, 생명주기
  • 정리
  • 참고

Was this helpful?

  1. STUDY
  2. JAVA ORM JPA

8장 프록시와 연관관계 관리

자바 ORM 표준 JPA 프로그래밍 8장을 요약한 내용 입니다.

프록시

엔티티를 조회할 때 연관된 엔티티들이 항상 사용되는 것은 아니다. 연관관계의 엔티티는 비즈니스 로직에 따라 사용될 때도 있지만 그렇지 않을 때도 있다.

// CASE 1. Member, Team 객체 조회 필요
public void printUserAndTeam(String memberId) {
	Member member = em.find(Member.class, memberId);
	Team team = member.getTeam();
	System.out.println("회원 이름: " + member.getUsername());
	System.out.println("소식팀: " + team.getName()); // team 객체 조회
}

// CASE 2. Member 객체 조회 필요
public void printUser(String memberId) {
	Member member = em.find(Member.class, memberId);
	Team team = member.getTeam();
	System.out.println("회원 이름: " + member.getUsername());
}

JPA는 이런 문제를 해결하려고 엔티티가 실제 사용될 때까지 데이터베이스 조회를 지연하는 방법을 제공하는데 이것을 지연 로딩이라 한다. 그런데 지연 로딩 기능을 사용하려면 실제 엔티티 객체 대상에 데이터베이스 조회를 지연할 수 있는 가짜 객체가 필요한데 이것을 프록시 객체라 한다.

하이버네이트는 지연 로딩을 지원하기 위해 프록시를 사용하는 방법과 바이트코드를 수정하는 두 가지 방법을 제공하는데 바이트코드를 수정하는 방법은 설정이 복잡하다. 하이버네이트 공식 사이트를 참고하자

프록시 기초

EntityManager.find()를 사용하면 영속성 컨텍스트에 엔티티가 없으면 데이터베이스를 조회한다.

Member member = em.find(Member.class, "member1");

엔티티를 실제 사용하는 시점까지 데이터베이스 조회를 미루고 싶으면 EntityManager.getReference() 메소드를 사용하면 된다. 이 메소드를 호출하면 데이터베이스 접근을 위임한 프록시 객체를 반환한다.

Member member = em.getReference(Member.class, "member1");

프록시 객체는 실제 객체에 대한 참조(target)를 보관한다. 그리고 프록시 객체의 메소드를 호출하면 프록시 객체는 실제 객체의 메소드를 호출한다. 이를 프록시 객체 초기화라 한다

프록시의 특징

  • 프록시 객체는 처음 사용할 때 한 번만 초기화된다.

  • 프록시 객체를 초기화한다고 프록시 객체가 실제 엔티티로 바뀌는 것은 아니다. 프록시 객체가 초기화되면 프록시 객체를 통해서 실제 엔티티에 접근할 수 있다.

  • 프록시 객체는 원본 엔티티를 상속받은 객체이므로 타입 체크 시에 주의해서 사용해야 한다.

  • 영속성 컨텍스트에 찾는 엔티티가 이미 있으면 데이터베이스를 조회할 필요가 없으므로 em.getReference()를 호출해도 프록시가 아닌 실제 엔티티를 반환한다.

  • 초기화는 영속성 컨텍스트의 도움을 받아야 가능하다. 따라서 영속성 컨텍스트의 도움을 받을 수 없는 준영속 상태의 프록시를 초기화하면 문제가 발생한다. 하이버네이트는 org.hibernate.LazyInitializationException 예외를 발생시킨다.

프록시와 식별자

Team team = em.getReference(Team.class, "team1"); // 식별자 보관
team.getId(); // 초기화되지 않음

프록시 객체는 식별자 값을 가지고 있으므로 식별자 값을 조회하는 team.getId()를 호출 해도 프록시를 초기화하지 않는다. (단, @Access(AccessType.PROPERTY)로 설정한 경우에만 초기화하지 않는다.) 엔티티 접근 방식을 필드 (@Access(AccessType.FIELD))로 설정하면 JPA는 getId() 메소드가 id만 조회하는 메소드인지 다른 필드까지 활용해서 어떤 일을 하는 메소드인지 알지 못하므로 프록시 객체를 초기화한다.

PersistenceUnitUtil.isLoaded(Object entity) 메소드를 사용하면 프록시 인스턴스의 초기화 여부를 확인할 수 있다.

boolean isLoad = em.getEntityManagerFactory()
										.getPersistenceUnitUtil().isLoaded(entity);
//또는 boolean isLoad = emf.getPersistenceUnitUtil().isLoaded(entity);

System.out.println("isLoad = " + isLoad); // 초기화 여부 확인

하이버네이트의 initialize() 메소드를 사용하면 프록시를 강제로 초기화할 수 있다.

org.hibernate.Hibernate.initialize(order.getMember()); // 프록시 초기화

즉시 로딩과 지연 로딩

회원 엔티티를 조회할 때 연관된 팀 엔티티도 함께 데이터베이스에서 조회하는 것이 좋을까? 아니면 회원 엔티티만 조회해 두고 팀 엔티티는 실제 사용하는 시점에 데이터베이스에서 조회하는 것이 좋을까? 정답은 없다. 상황에 따라 다를 수 있다.

  • 즉시 로딩 : 엔티티를 조회할 때 연관된 엔티티도 함께 조회한다.

    • 설정 방법 : @ManyToOne(fetch = FetchType.EAGER)

  • 지연 로딩 : 연관된 엔티티를 실제 사용할 때 조회한다.

    • 설정 방법 : @ManyToOne(getch = FetchType.LAZY)

즉시 로딩

즉시 로딩을 최적화하기 위해 가능하면 조인 쿼리를 사용한다. 여기서는 회원과 팀을 조인해서 쿼리 한번으로 두 엔티티를 모두 조회한다.

SELECT
    M.MEMBER_ID AS MEMBER_ID,
    M.TEAM_ID AS TEAM_ID,
    M.USERNAME AS USERNAME,
    T.TEAM_ID AS TEAM_ID,
    T.NAME AS NAME
FROM MEMBER M 
LEFT OUTER JOIN TEAM T
	  ON M.TEAM一ID=T.TEAM一ID
WHERE
    M.MEMBER_ID='member1'

NULL 제약조건과 JPA 조인 전략

현재 회원 테이블에 TEAM_ID 외래 키는 NULL 값을 허용하고 있다. 따라서 팀에 소속되지 않은 회원이 있을 가능성이 있다. 팀에 소속하지 않은 회원과 팀을 내부 조인 하면 팀은 물론이고 회원 데이터도 조회할 수 없다.

하지만 외부 조인보다 내부 조인이 성능과 최적화에서 더 유리하다.

내부 조인을 사용하려면 어떻게 해야 할까?

외래 키에 NOT NULL 제약 조건을 설정하면 값이 있는 것을 보장한다. NOT NULL을 표현하는 방법은 두 가지가 있다.

  • @JoinColumn(name = "TEAM_ID", nullable = false)

  • @ManyToOne(fetch = FetchType.EAGER, optional = false)

정리하자면 JPA는 선택적 관계면 외부 조인을 사용하고 필수 관계면 내부 조인을 사용한다.

지연 로딩

조회 대상이 영속성 컨텍스트에 이미 있으면 프록시 객체를 사용할 이유가 없다. 따라서 프록시가 아닌 실제 객체를 사용한다. 예를 들어 team1 엔티티가 영속성 컨텍스트에 이미 로딩되어 있으면 프록시가 아닌 실제 team1 엔티티를 사용한다.

하이버네이트는 엔티티를 영속 상태로 만들 때 엔티티에 컬렉션이 있으면 컬렉션을 추적하고 관리할 목적으로 원본 컬렉션을 하이버네이트가 제공하는 내장 컬렉션으로 변경하는데 이것을 컬렉션 래퍼라 한다.

@Entity
public class Member {
	@Id
	private String id;

	@OneToMany(mappedBy = "member", fetch = FetchType.LAZY)
	private List<Order> orders;
	
	...
}

JPA 기본 페치 전략

  • @ManyToOne, @OneToOne: 즉시 로딩(FetchType.EAGER)

  • @OneToMany, @ManyToMany: 지연 로딩(FetchType.LAZY)

JPA의 기본 페치 전략은 연관된 엔티티가 하나면 즉시 로딩을, 컬렉션이면 지연 로딩을 사용한다. 하지만 필자가 추천하는 방법은 모든 연관관계에 지연 로딩을 사용하는 것이다.

컬렉션에 FetchType.EAGER 사용 시 주의점

  • 컬렉션을 하나 이상 즉시 로딩하는 것은 권장하지 않는다. 예를 들어 A 테이블을 N, M 두 테이블과 일대다 조인하면 SQL 실행 결과가 N 곱하기 M이 되면서 너무 많은 데이터를 반환할 수 있고 결과적으로 애플리케이션 성능이 저하될 수 있다. 따라서 2개 이상의 컬렉션을 즉시 로딩으로 설정하는 것은 권장하지 않는다.

  • 컬렉션 즉시 로딩은 항상 외부 조인을 사용한다. 데이터베이스 제약조건으로 내부 조인으로 인해 검색이 되지 않는 상황을 막을 수는 없다. 따라서 JPA는 일대다 관계를 즉시 로딩할 때 항상 외부 조인을 사용한다.

FetchType.EAGER 설정과 조인 전략

  • @ManyToOne, @OneToOne

    • (optional = false) : 내부 조인

    • (optional = true) : 외부 조인

  • @OneToMany, @ManyToMany

    • (optional = false) : 외부 조인

    • (optional = true) : 외부 조인

영속성 전이: CASCADE

특정 엔티티를 영속 상태로 만들 때 연관된 엔티티도 함께 영속 상태로 만들고 싶으면 영속성 전이(transitive persistence) 기능을 사용하면 된다. JPA는 CASCADE 옵션으로 영속성 전이를 제공한다.

private static void saveNoCascade(EntityManager em) {
    // 부모 저장
    Parent parent = new Parent();
    em.persist(parent) ;

    // 1번 자식 저장
    Child child1 = new Child();
    child1.setParent(parent); //자식 -> 부모 연관관계 설정
    parent.getChildren().add(childl) ; //부모 -> 자식
    em.persist(childl);

    // 2번 자식 저장
    Child child2 = new Child();
    child2.setParent(parent); //자식 -> 부모 연관관계 설정
    parent.getChildren().add(child2); //부모 -> 자식
    em.persist(child2);
}

JPA에서 엔티티를 저장할 때 연관된 모든 엔티티는 영속 상태이여야 한다. 따라서 예제를 보면 부모 엔티티, 자식 엔티티 각각 영속 상태로 만든다.

영속성 전이: 저장

@Entity
public class Parent {
	...

	@OneToMany(mappedBy = "parent", cascade = CascadeType.PERSIST)
	private List<Child> children = new ArrayList<Child>();
}
private static void saveWithCascade(EntityManager em) {
    Child child1 = new Child();
    Child child2 = new Child();

    Parent parent = new Parent();
    childl.setParent(parent) ; //연관관계 추가
    child2.setParent(parent) ; //연관관계 추가
    parent.getChildren().add(child1);
    parent.getChildren().add(child2);
    
    //부모저장, 연관된자식들저장
    em.persist(parent);
}

영속성 전이는 연관관계를 매핑하는 것과는 아무 관련이 없다. 단지 엔티티를 영속화할 때 연관된 엔티티도 같이 영속화하는 편리함을 제공할 뿐이다.

CASCADE의 종류

public enum CascadeType {
    ALL, //모두 적용
    PERSIST, //영속
    MERGE, //병합
    REMOVE, //삭제
    REFRESH, //REFRESH
    DETACH //DETACH
}

참고로 CascadeType.PERSIST, CascadeType.REMOVE는 em.persist(), em.remove()를 실행할 때 바로 전이가 발생하지 않고 플러시를 호출할 때 전이가 발생한다.

고아 객체

JPA는 부모 엔티티와 연관관계가 끊어진 자식 엔티티를 자동으로 삭제하는 기능을 제공하는데 이것을 고아 객체 제거라 한다. 부모 엔티티의 컬렉션에서 자식 엔티티의 참조만 제거하면 자식 엔티티가 자동으로 삭제되도록 작성해보자.

@Entity
public class Parent {
    @Id @GeneratedValue
    private Long id;
    
    @OneToMany(mappedBy = "parent", orphanRemoval = true)
    private List<Child> children = new ArrayList<Child>();
    ...
}

고아 객체 제거 기능은 영속성 컨텍스트를 플러시할 때 적용되므로 플러시 시점에 DELETE SQL이 실행된다.

Parent parent1 = em.find(Parent.class, id);
parent1.getChildren().remove(0); //자식 엔티티를 컬렉션에서 제거

참조가 제거된 엔티티는 다른 곳에서 참조하지 않는 고아 객체로 보고 삭제하는 기능이다. 만약 삭제한 엔티티를 다른 곳에서도 참조한다면 문제가 발생할 수 있다. 이런 이유로 orphanRemovel은 @OneToOne, @OneToMany에만 사용할 수 있다.

부모를 제거하면 자식도 같이 제거할 수 있다. CadecadeType.REMOVE를 설정하면 가능하다.

영속성 전이 + 고아 객체, 생명주기

CascadeType.ALL + orphanRemoval = true를 동시에 사용하면 어떻게 될까?

일반적으로 엔티티는 EntityManager.persist()를 통해 영속화되고 EntityManager.remove()를 통해 제거된다. 이것은 엔티티 스스로 생명주기를 관리한다는 뜻이다. 그런데 두 옵션을 모두 활성화하면 부모 엔티티를 통해서 자식의 생명주기를 관리할 수 있다.

영속성 전이는 DDD의 Aggregate Root개념을 구현할 때 사용하면 편리하다

정리

  • JPA 구현체들은 객체 그래프를 마음껏 탐색할 수 있도록 지원하는데 이때 프록시 기술을 사용한다.

  • 객체를 조회할 때 연관된 객체를 즉시 로딩하는 방법을 즉시 로딩이라 하고, 연관된 객체를 지연해서 로딩하는 방법을 지연 로딩이라 한다.

  • 객체를 저장하거나 삭제할 때 연관된 객체도 함께 저장하거나 삭제할 수 있는데 이것을 영속성 전이라 한다.

  • 부모 엔티티와 연관관계가 끊어진 자식 엔티티를 자동으로 삭제하려면 고아 객체 제거 기능을 사용하면 된다.

참고

Previous7장 고급 매핑Next9장 값 타입

Last updated 4 years ago

Was this helpful?

JPA에서 대량의 데이터를 삭제할때 주의해야할 점
프록시 초기화