🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 단방향 연관관계
  • 객체 관계 매핑
  • @JoinColumn
  • @ManyToOne
  • 연관관계 사용
  • 양방향 연관관계
  • 연관관계의 주인
  • 양방향 연관관계의 주의점
  • 순수한 객체까지 고려한 양방향 연관관계
  • 연관관계 편의 메소드
  • 정리

Was this helpful?

  1. STUDY
  2. JAVA ORM JPA

5장 연관관계 매핑 기초

자바 ORM 표준 JPA 프로그래밍 5장을 요약한 내용 입니다.

Previous4장 엔티티 매핑Next6장 다양한 연관관계 매핑

Last updated 5 years ago

Was this helpful?

객체 관계 매핑(ORM)에서 가장 어려운 부분이 바로 객체 연관관계와 테이블 연관관계를 매핑하는 일이다.

단방향 연관관계

  • 객체 연관관계

    • 회원 객체와 팀 객체는 단방향 관계다. 반대 방향인 team → member를 접근하는 필드는 없다.

  • 테이블 연관관계

    • 회원 테이블은 TEAM_ID 외래 키로 팀 테이블과 연관관계를 맺는다.

    • 회원 테이블과 팀 테이블은 양방향 관계다.

    SELECT *
    FROM MEMBER M
    JOIN TEAM T ON M.TEAM_ID = T.ID

    다음은 반대인 팀과 회원을 조인하는 SQL이다.

    SELECT *
    FROM TEAM T
    JOIN MEMBER M ON T.TEAM_ID = M.TEAM_ID

객체 연관관계와 테이블 연관관계의 가장 큰 차이 참조를 통한 연관관계는 언제나 단방향이다. 객체간에 연관관계를 양방향으로 만들고 싶으면 반대쪽에도 필드를 추가해서 참조를 보관해야 한다. 하지만 정확히 이야기하면 이것은 양방향 관계가 아니라 서로 다른 단방향 관계 2개다.

객체 연관관계 vs 테이블 연관관계 정리

  • 객체는 참조(주소)로 연관관계를 맺는다.

  • 테이블은 외래 키로 연관관계를 맺는다.

연관된 데이터를 조회할 때 객체는 참조를 사용하지만 테이블은 조인(JOIN)을 사용한다. 객체는 참조를 사용해서 연관관계를 탐색할 수 있는데 이것을 객체 그래프 탐색이라 한다.

객체 관계 매핑

이제 JPA를 사용해서 둘을 매핑 해보자.

@Entity
public class Member {
	@Id
	@Column(name = "MEMBER_ID")
	private String id;
	private String username;
	
	//연관관계 매핑
	@ManyToOne
	@JoinColumn(name="TEAM_ID")
	private Team team;
	
	//연관관계 설정
	public void setTeam(Team team) {
		this.team = team;
	}
	//Getter, Setter ...
}
@Entity
public class Team {
	@Id
	@Column (name = "TEAM_ID")
	private String id;
	
	private String name;
	//Getter, Setter ...
}

Member.team과 MEMBER.TEAM_ID를 매핑하는 것이 연관관계 매핑이다.

  • @ManyToOne : 이름 그대로 다대일(N:1) 관계라는 매핑 정보다.

  • @JoinColumn(name="TEAM_ID") : 조인 컬럼은 외래 키를 매핑할 때 사용한다.

@JoinColumn

@JoinColumn은 외래 키를 매핑할 때 사용한다.

속성

기능

기본값

name

매핑할 외래 키 이름

필드명 +

"_"+ 참조하는 테이블의 기본 키 컬럼명

referencedColumnName

외래 키가 참조하는 대상 테이블의 컬럼명

참조하는 테이블의 기본키 컬럼

foreignKey

외래 키 제약조건을 직접 지정할 수 있다. 이 속성은 테이블을 생성할 때만 사용한다.

unique

nullable

insertable

updatable

columnDefinition

table

@Column의 속성과 같

@JoinColumn 생략

기본 전략 : 필드명 + "_" + 참조하는 테이블의 컬럼명 예시 : 필드명(team) + "_" + 참조하는 테이블의 컬럼명(TEAM_ID) team_TEAM_ID

@ManyToOne

@ManyToOne 어노테이션은 다대일 관계에서 사용한다.

속성

기능

optional

false로 설정하면 연관된 엔티티가 항상 있어야 한다

fetch

글로벌 페치 전략을 설정한다. 자세한 내용은 8장 참고

cascade

영속성 전이 기능을 사용한다. 자세한 내용은 8장 참고

targetEntity

연관된 엔티티의 타입 정보를 설정한다. 이 기능은 거의 사용하지 않는다. 제네릭으로 타입 정보를 알 수 있다.

방향 관계를 매핑할 때 둘 중 어떤 것을 사용해야 할지는 반대편 관계에 달려 있다. 반대편이 일대다 관계면 다대일을 사용하고 반대편이 일대일 관계면 일대일을 사용하면 된다. 참고로 일대일 관계는 다음 장에서 설명한다.

연관관계 사용

조회

연관관계가 있는 엔티티를 조회하는 방법은 크게 2가지다.

  • 객체 그래프 탐색(객체 연관관계를 사용한 조회)

    Member member = em.find(Member.class, "member1");
    Team team = member.getTeam(); // 객체 그래프 탐색
    System.out.println("팀 이름 = " + team.getName());
    
    // 출력 결과 : 팀 이름 = 팀1
  • 객체지향 쿼리 사용(JPQL)

    private static void queryLogicJoin(EntityManager em) {
    String jpql = "select m from Member m join m.team t where ” +” t. name=: teamName ";
    
    List<Member> resultList = em.createQuery(jpql, Member.class)
    	.setParameter ("teamName", "팀 1");
    	.getResultList();
    
    for (Member member : resultList) {
    	System. out. printin (" [query] member. username=,' +member.getUsername());
    }
    
    // 결과: [query] member.username = 회원1
    // 결과: [query] member.username = 회원2

수정

private static void updateRelation(EntityManager em) {
	//새로운 팀 2
	Team team2 = new Team(”team2”, ”팀2”);
	em.persist(team2);
	
	//회원 1 에 새로운 팀2 설정
	Member member = em.find(Member.class, "memberl");
	member.setTeam(team2);
}

실행되는 수정 SQL은 다음과 같다.

UPDATE MEMBER
SET 
	TEAM_ID='team2',
WHERE
	ID='member1'

양방향 연관관계

데이터베이스 테이블은 외래 키 하나로 양방향으로 조회할 수 있다. 따라서 데이터베이스에 추가할 내용은 전혀 없다.

@Entity
public class Member {
  @Id
  @Column (name = ”MEMBER_ID”)
  private String id;
  private String username;

  @ManyToOne
  @JoinColumn(name="TEAM_ID H)
  private Team team;

  //연관관계 :설정
  public void setTeam(Team team) {
    this.team = team;
  }
  //Getter, Setter ...  
}

회원 엔티티에는 변경한 부분이 없다. 팀 엔티티를 보자.

@Entity
public class Team {
  @Id
  @Column(name = ”TEAM_ID”)
  private String id;

  private String name;

  //==추가==//
  @OneToMany (mappedBy = "team")
  private List<Member> members = new ArrayList<Member> () ;

  ...
}

연관관계의 주인

@OneToMany만 있으면 되지 mappedBy는 왜 필요할까? 객체에는 양방향 연관관계라는 것이 없다. 서로 다른 단방향 연관관계 2개를 애플리케이션 로직으로 잘 묶어서 양방향인 것처럼 보이게 할 뿐이다.

엔티티를 양방향 연관관계로 설정하면 객체의 참조는 둘인데 외래 키는 하나다. 따라서 둘 사이에 차이가 발생한다. 이런 차이로 인해 JPA에서는 두 객체 연관관계 중 하나를 정해서 테이블의 외래키를 관리해야 하는데 이것을 연관관계의 주인(OWNER)이라 한다.

연관관계의 주인만이 데이터베이스 연관관계와 매핑되고 외래 키를 관리(등록, 수정, 삭제)할 수 있다. 반면에 주인이 아닌 쪽은 읽기만 할 수 있다.

연관관계의 주인을 정한다는 것은 사실 외래 키 관리자를 선택하는 것이다.

연관관계의 주인은 외래 키가 있는 곳

연관관계의 주인은 테이블에 외래 키가 있는 곳으로 정해야 한다. 여기서는 회원 테이블이 외래 키를 가지고 있으므로 Member.team이 주인이 된다.

양방향 연관관계의 주의점

양방향 연관관계를 설정하고 가장 흔히 하는 실수는 연관관계의 주인에는 값을 입력하지 않고, 주인이 아닌 곳에만 값을 입력하는 것이다. 데이터베이스에 외래 키값이 정상적으로 저장되지 않으면 이것부터 의심해보자.

public void testSaveNonOwner() {
  //회원1 저장
  Member member 1 = new Member ("member 1", ''회원1”);
  em.persist(member1);

  //회원2 저장
  Member member2 = new Member (”member2", "회원2”);
  em.persist(member2);

  Team teaml = new Team("teaml", ”팀 1”);
  
  //주인이 아닌 곳만 연관관계 설정
  teaml.getMembers().add(member1);
  teaml.getMembers().add(member2);
  em.persist(teaml);
}

MEMBERID

USERNAME

TEAMID

member1

회원1

null

member2

회원2

null

이는 연관관계의 주인이 아닌 Team.members에만 값을 저장했기 때문이다. 예제 코드는 연관관계의 주인인 Member.team에 아무 값도 입력하지 않았다. 따라서 TEAM_ID 외래 키의 값도 null이 저장된다.

순수한 객체까지 고려한 양방향 연관관계

객체 관점에서 양쪽 방향에 모두 값을 입력해주는 것이 가장 안전하다. 양쪽 방향 모두 값을 입력하지 않으면 JPA를 사용하지 않는 순수한 객체 상태에서 심각한 문제가 발생할 수 있다.

public void testORM_양방향 () {
  //팀1 저장
  Team teaml : new Team ("teaml”, "팀 1”) ;
  em.persist(team1);

  Member member 1 = new Member ("member 1", "회원1”) ;
  
  //양방향 연관관계 설정
  member1.setTeam(teaml) ; //연관관계 설정 member 1 -> teaml
  team1.getMembers().add(member1); //연관관계 설정 teaml -> member 1
  em.persist(member1);

  Member member2 = new Member ("meinber2", ”회원2”) ;
  
  //양방향 연관관계 설정
  member2.setTeam (teaml); //연관관계 설정 member2 -> teaml
  team1.getMembers().add(member2); "연관관계 설정 teaml -> member2
  em.persist(member2);
}

연관관계 편의 메소드

양방향 연관관계는 결국 양쪽 다 신경 써야 한다. 이전에는 member.setTeam(team)과 team.getMembers.add(member)를 각각 호출하다 보면 실수로 둘 중 하나만 호출해서 양방향이 깨질 수 있다. 양방향 관계에서 두 코드는 하나인 것처럼 사용하는 것이 안전하다.

public class Member {
  private Team team;
  public void setTeam(Team team) {
    this.team = team;
    team.getMembers().add(this);
  }
  ...
}

정리

연관관계가 하나인 단방향 매핑은 언제나 연관관계의 주인이라는 점이다. 양방향은 여기에 주인이 아닌 연관관계를 하나 추가했을 뿐이다. 결국 단방향과 비교해서 양방향의 장점은 반대방향으로 객체 그래프 탐색 기능이 추가된 것뿐이다.

  • 단방향 매핑만으로 테이블과 객체의 연관관계 매핑은 이미 완료되었다.

  • 단방향을 양방향으로 만들면 반대방향으로 객체 그래프 탐색 기능이 추가된다.

  • 양방향 연관관계를 매핑하려면 객체에서 양쪽 방향을 모두 관리해야 한다.

연관관계의 주인을 정하는 기준

단방향은 항상 외래 키가 있는 곳을 기준으로 매핑하면 된다. 하지만 양방향은 연관관계의 주인(Owner)이라는 이름으로 인해 오해가 있을 수 있다. 비즈니스 로직상 더 중요하다고 연관 관계의 주인으로 선택하면 안 된다. 비즈니스 중요도를 배제하고 단순히 외래 키 관리자 정도의 의미만 부여해야 한다. 따라서 연관 관계의 주인은 외래 키의 위치와 관련해서 정해야지 비즈니스 중요도로 접근하면 안 된다.

양방향 매핑 시에는 무한 루프에 빠지지 않게 조심해야 한다.

Member.toString()에서 getTeam()을 호출하고 Team.toString()에서 getMember()를 호출하면 무한 루프에 빠질 수 있다.

일대다를 연관관계의 주인으로 선택하는 것이 불가능한 것만은 아니다. 팀 엔티티의 Team.members를 연관관계의 주인으로 선택할 수는 있다. 하지만 성능과 관리 측면에서 권장하지 않는다. 될 수 있으면 외래 키가 있는 곳을 연관관계의 주인으로 선택하자

질문

  • flush()를 사용할때나 안할때 왜 다를까?

  • lombok → toString, euqals 이슈

회원 객체는 필드로 팀 객체와 연관관계를 맺는다.

Member.team
@JoinColumn