🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • Object 제공 method
  • Object 클래스란?
  • Object 주요 method
  • hashCode()
  • hashCode가 제공하는 전략은 어떤게 있을까?
  • hashCode 기본 전략은 어떻게 될까?
  • equals()
  • equals()의 기본 전략은 어떻게 될까?
  • 동등성 비교 로직은 어떻게 작성할까?
  • hashCode() 왜 필요한가?
  • hashCode()가 같을 경우?
  • hashCode가 동일할 경우, 조회는 항상 O(n)의 효율을 가지는가?
  • 참고

Was this helpful?

  1. Question & Answer
  2. JAVA

hashCode()와 equals()

hashCode와 equals를 알아보고 override 해야 하는 이유에 대해 알아보자

PreviousThread(쓰레드)NextJDK 8 특징

Last updated 1 year ago

Was this helpful?

Object 제공 method

Object 클래스란?

java.lang 패키지는 구현시에 import 를 하지 않아도 자동으로 참조되는 패키지로서 자바에서 사용되는 주요 클래스와 API가 정의 되어있다. 이 중 Object 클래스는 모든 클래스의 최상위 클래스로서 Java Document에는 Object 클래스를 아래와 같이 정의하고 있다.

/**
 * Object is the root of the java class hierarchy. All non-base types
 * respond to the messages defined in this class.
 *
 * @author		OTI
 * @version		initial
 */
 
public class Object { ... }

Object 주요 method

Object에는 객체가 가져야 할 기본적인 메서드를 제공한다.

메소드

설 명

boolean equals(Object obj)

두 개의 객체가 같은지 비교하여 같으면 true를, 같지 않으면 false를 반환한다.

String toString()

현재 객체의 문자열을 반환한다.

protected Object clone()

객체를 복사한다.

protected void finalize()

가비지 컬렉션 직전에 객체의 리소스를 정리할 때 호출한다.

Class getClass()

객체의 클래스형을 반환한다.

int hashCode()

객체의 코드값을 반환한다.

void notify()

wait된 스레드 실행을 재개할 때 호출한다.

void notifyAll()

wait된 모든 스레드 실행을 재개할 때 호출한다.

void wait()

스레드를 일시적으로 중지할 때 호출한다.

void wait(long timeout)

주어진 시간만큼 스레드를 일시적으로 중지할 때 호출한다.

void wait(long timeout, int nanos)

주어진 시간만큼 스레드를 일시적으로 중지할 때 호출한다.

hashCode()

hashCode는 기본적으로 객체의 고유의 값을 표기할 때 사용한다. hashCode를 override 하지 않고 그대로 사용한다면 jdk 버전에 따라 기본 전략을 사용하게 된다.

hashCode가 제공하는 전략은 어떤게 있을까?

hashcode는 native method로 구현되어 있어 실제로는 cpp 파일을 확인해야 한다. jvm.cpp를 살펴보면 제공하는 전략을 확인할 수 있다.

// hashCode() generation :
//
// Possibilities:
// * MD5Digest of {obj,stwRandom}
// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
// * A DES- or AES-style SBox[] mechanism
// * One of the Phi-based schemes, such as:
//   2654435761 = 2^32 * Phi (golden ratio)
//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
// * A variation of Marsaglia's shift-xor RNG scheme.
// * (obj ^ stwRandom) is appealing, but can result
//   in undesirable regularity in the hashCode values of adjacent objects
//   (objects allocated back-to-back, in particular).  This could potentially
//   result in hashtable collisions and reduced hashtable efficiency.
//   There are simple ways to "diffuse" the middle address bits over the
//   generated hashCode values:

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0;
  if (hashCode == 0) {
    // This form uses global Park-Miller RNG.
    // On MP system we'll have lots of RW access to a global, so the
    // mechanism induces lots of coherency traffic.
    value = os::random();
  } else if (hashCode == 1) {
    // This variation has the property of being stable (idempotent)
    // between STW operations.  This can be useful in some of the 1-0
    // synchronization schemes.
    intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
    value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
  } else if (hashCode == 2) {
    value = 1;            // for sensitivity testing
  } else if (hashCode == 3) {
    value = ++GVars.hcSequence;
  } else if (hashCode == 4) {
    value = cast_from_oop<intptr_t>(obj);
  } else {
    // Marsaglia's xor-shift scheme with thread-specific state
    // This is probably the best overall implementation -- we'll
    // likely make this the default in future releases.
    unsigned t = Self->_hashStateX;
    t ^= (t << 11);
    Self->_hashStateX = Self->_hashStateY;
    Self->_hashStateY = Self->_hashStateZ;
    Self->_hashStateZ = Self->_hashStateW;
    unsigned v = Self->_hashStateW;
    v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
    Self->_hashStateW = v;
    value = v;
  }

  value &= markOopDesc::hash_mask;
  if (value == 0) value = 0xBAD;
  TEVENT(hashCode: GENERATE);
  return value;
}

hashCode 전략

  1. 객체의 메모리 주소 int로 캐스팅 한 값을 우로 3 쉬프트 한 값을 사용

  2. 고정된 값 1을 반환 (테스팅 목적)

  3. 연속된 시퀀스를 반환

  4. 객체의 메모리 주소를 그냥 int로 캐스팅함

  5. XOR 쉬프트를 통한 스레드 상태를 기반으로 생성

hashCode 기본 전략은 어떻게 될까?

hashCode 기본전략은 global.hpp를 확인하면 알 수 있다.

OpenJDK 8의 경우 5번을 사용한다.

#define RUNTIME_FLAGS(develop, develop_pd, product, product_pd, diagnostic, experimental, notproduct, manageable, product_rw, lp64_product) \\
// ..
develop(bool, InlineObjectHash, true,                                     
        "Inline Object::hashCode() native that is known to be part "      
        "of base library DLL")                                            
product(intx, hashCode, 5, "(Unstable) select hashCode generation algorithm")                

JDK 6,7은 0번 전략을 사용한다.

develop(bool, InlineObjectHash, true,                                     
        "inline Object::hashCode() native that is known to be part "      
        "of base library DLL")                                            
product(intx, hashCode, 0, "(Unstable) select hashCode generation algorithm" )               

equals()

equals()는 두 객체가 같은지 비교하여 결과값을 리턴한다. 비교는 두 가지의 기준으로 구분할 수 있다.

  • 동일성 : 두 객체의 주소가 같은지 비교

  • 동등성 : 두 객체의 값이 같은지 비교

equals()는 이 중에서 동등성 비교를 하기 위함이다. 동일성을 비교하려면 '=='을 사용해야 한다.

equals()의 기본 전략은 어떻게 될까?

equals()를 오버라이드 하지 않는다면 인스턴스의 주소 값을 리턴하게 된다.

/**
 * Compares the argument to the receiver, and answers true
 * if they represent the <em>same</em> object using a class
 * specific comparison. The implementation in Object answers
 * true only if the argument is the exact same object as the
 * receiver (==).
 *
 * @param		o Object
 *					the object to compare with this object.
 * @return		boolean
 *					<code>true</code>
 *						if the object is the same as this object
 *					<code>false</code>
 *						if it is different from this object.
 * @see			#hashCode
 */
public boolean equals (Object o) {
	return this == o;
}

그러므로 동등성을 비교하기 위해서는 객체의 필드를 비교할 수 있는 로직이 필요하다.

동등성 비교 로직은 어떻게 작성할까?

동등성 비교는 각 필드들을 각각 비교해주어야 한다. 이펙티브 자바 아이템 10 이나 인텔리제이를 사용한다면 equals()를 작성하는 공식이 있다.

equals 구현 전략

  • == 연산자를 사용해 입력이 자기 자신의 참조 인지 확인한다.

  • instanceof 연산자로 입력이 올바른 타입 인지 확인한다. 이때의 올바른 타입은 equals가 정의된 클래스인 것이 보통이지만, 가끔은 그 클래스가 구현한 특정 인터페이스가 될 수도 있다.

  • 입력을 올바른 타입으로 형변환한다. 앞서 2번에서 instanceof를 했기 때문에 이 단계는 100% 성공한다.

  • 입력 객체와 자기 자신의 대응되는 '핵심' 필드들이 모두 일치하는지 하나씩 검사한다.

  • 어떤 필드를 먼저 비교하느냐가 equals의 성능을 좌우하기도 한다. 최상의 성능을 바란다면 다를 가능성이 더 크거나 비교하는 비용이 싼 필드를 먼저 비교하자

  • equals를 재정의할 땐 hashCode도 반드시 재정의하자(아이템11 참고)

  • Object 외의 타입을 매개변수로 받는 equals 메서드는 선언하지 말자. 이 메서드는 Object.equals를 재정의한 게 아니다. 입력 타입이 Object가 아니므로 재정의가 아니라 다중정의 한것이다.

다음 예제는 위의 구현 전략을 토대로 작성된 코드이다.

public class Person {
    private int id;
    private String name;
    private Integer age;
    private Address address;

    @Override
    public boolean equals(Object o) {
        if (this == o) {
            return true;
        }
        if (!(o instanceof Person)) {
            return false;
        }
        Person person = (Person)o;
        return id == person.id && Objects.equals(name, person.name) && Objects.equals(age, person.age)
               && Objects.equals(address, person.address);
    }

    @Override
    public int hashCode() {
        return Objects.hash(id, name, age, address);
    }
}

hashCode() 왜 필요한가?

equals는 필드 전체를 비교해야 하므로 느리다. 그에 비해 해시값을 사용하면 일정 계산과 계산 결과의 비교만으로 끝나기 때문에 빠르게 객체 비교를 판별할 수 있다. 그렇기 때문에 HashMap이나 HashSet에서는 아래와 같은 로직을 사용한다.

  • 해시값으로 객체를 비교한다.

  • 해시값이 동일한 경우에 한해 euqals 메서드로 비교한다.

hashCode()가 같을 경우?

hashmap 내부에는 hashCode를 기반으로 배열의 인덱스를 바로 접근하여 값을 찾기 때문에 O(1)의 값을 가진다. 그러나 hashCode값이 모두 동일하다면 배열의 특정 인덱스에 값이 충돌하게 되는데 이때 seperate chaning 전략을 사용하여 여러개의 값을 담을 수 있는 LinkedList로 구성되어 있기 때문에 중복된 hashCode에도 값을 넣을 수 있다. 단, hashCode로 인덱스를 조회한 후 LinkedList를 순회하기 때문에 O(n)의 효율을 가지게 된다.

/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

hashCode가 동일할 경우, 조회는 항상 O(n)의 효율을 가지는가?

java 2 부터 java 7 까지는 내부 구현은 다르지만 평균적으로 O(n)의 효율을 가지고 있었다. 그러나 java 8 부터는 데이터 갯수가 특정 사이즈를 넘어가게 되면 Tree구조로 변경되어 O(logN)의 효율을 가질 수 있게 되었다.

그러기 위해서 java 7 까지는 Entry 클래스를 사용하였지만 java 8 부터는 Node 클래스를 사용하게 되었다.

내부 자료구조를 변경하는 기준은 어떻게 되나?

hashcode의 값의 충돌 사이즈가 8이상이 되면 treeNode로 변경하고 6 미만이면 Linkedlist로 변경한다. 차이가 2가 나는 이유는 자료구조를 변경하는 오버헤드가 크기 때문이다.

참고

(참고 : )

운영체제에 구현된 random()을 사용

https://i.imgur.com/dShPCEh.png

https://hg.openjdk.org/jdk9/jdk9/hotspot/file/fc7e94cb7485/src/share/vm/runtime/globals.hpp#l1198
Park-Miller RNG
https://hyeonstorage.tistory.com/178
https://www.holaxprogramming.com/2012/06/30/java-basic-object-class/
https://namocom.tistory.com/803
https://gompangs.tistory.com/entry/HashMap-에-대하여
https://d2.naver.com/helloworld/831311
https://www.jitendrazaa.com/blog/java/what-is-the-need-to-override-hashcode-and-equals-method/