🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 산술 연산자 오버로딩
  • 이항 산술 연산 오버로딩
  • 복합 대입 연산자 오버로딩
  • 단항 연산자 오버로딩
  • 비교 연산자 오버로딩
  • 동등성 연산자: equals
  • 순서 연산자: compareTo
  • 컬렉션과 범위에 대해 쓸 수 있는 관례
  • in 관례
  • rangeTo 관례
  • for 루프를 위한 iterator 관례
  • 구조 분해 선언과 component 함수
  • 구조 분해 선언과 루프
  • 프로퍼티 접근자 로직 재활용: 위임 프로퍼티
  • 위임 프로퍼티 사용: by lazy()를 사용한 프로퍼티 초기화 지연
  • 요약

Was this helpful?

  1. STUDY
  2. KOTLIN IN ACTION

7장 연산자 오버로딩과 기타 관례

KOTLIN IN ACTION 7장을 요약한 내용입니다.

산술 연산자 오버로딩

코틀린에서 관례를 사용하는 가장 단순한 예는 산술 연산자다. 자바에서는 원시 타입에 대해서만 산술 연산자를 사용할 수 있고, 추가로 String에 대해 + 연산자를 사용할 수 있다.

이항 산술 연산 오버로딩

Point에서 지원하고픈 첫 번째 연산은 두 점을 더하는 연산이다.

// case 1. 연산자를 자체 함수로 정의하기
data class Point(val x: Int, val y: Int) {
    operator fun plus(other: Point): Point {
        return Point(x + other.x, y + other.y)
    }
}

fun main(args: Array<String>) {
    val p1 = Point(10, 20)
    val p2 = Point(30, 40)
    println(p1 + p2)
}

// case 2. 연산자를 확장 함수로 정의하기
data class Point(val x: Int, val y: Int)

operator fun Point.plus(other: Point): Point {
    return Point(x + other.x, y + other.y)
}

operator 변경자를 추가해 plus 함수를 선언하고 나면 + 기호로 두 Point 객체를 더할 수 있다.

오버로딩 가능한 이항 산술 연산자

Expression

Function name

a * b

times

a / b

div

a % b

mod

a + b

plus

a - b

minus

연산자를 정의할 때 두 피연산자가(연산자 함수의 두 파라미터)가 같은 타입일 필요는 없다. 또는 연산자 함수의 반환 타입이 꼭 두 피연산자 중 하나와 일치해야만 하는 것도 아니다.

data class Point(val x: Int, val y: Int)

// case 1. 두 피연산자가 다른 연산자 정의
operator fun Point.times(scale: Double): Point {
    return Point((x * scale).toInt(), (y * scale).toInt())
}

// case 2. 반환 타입이 피연산자와 다른 연산자 정의
operator fun Char.times(count: Int): String {
    return toString().repeat(count)
}

복합 대입 연산자 오버로딩

+=, -= 등의 연산자는 복합 대입(compound assignment)연산자라 불린다.

>>> var point = Point(1, 2)
>>> point += Point(3, 4)
>>> println(point)
Point(x=4, y=6)

코틀린 표준 라이브러리는 변경 가능한 컬렉션에 대해plusAssign을 정의하며, 앞의 예제는 그 plusAssign을 사용한다.

operator fun <T> MutableCollection<T>.plusAssign(element: T) {
		this.add(element)
}

이론적으로코드에 있는 +=를 plus와 plusAssign 양쪽으로 컴파일할 수 있다. 어떤 클래스가 이 두 함수를 모두 정의하고 둘 다 +=에 사용 가능한 경우 컴파일러는 오류를 보고한다.

단항 연산자 오버로딩

단항 연산자 오버로딩하는 절차도 이항 연산자와 마찬가지다.

data class Point(val x: Int, val y: Int)

operator fun Point.unaryMinus(): Point {
    return Point(-x, -y)
}

fun main(args: Array<String>) {
    val p = Point(10, 20)
    println(-p)
}

오버로딩할 수 있는 단항 산술 연산자

Expression

Function name

+a

unaryPlus

-a

unaryMinus

!a

not

++a, a++

inc

--a, a--

dec

비교 연산자 오버로딩

동등성 연산자: equals

코틀린이 == 연산자 호출을 equals 메소드 호출로 컴파일한다는 사실을 배웠다. ≠ 연산자를 사용하는 식도 equals 호출로 컴파일된다.

class Point(val x: Int, val y: Int) {
    override fun equals(obj: Any?): Boolean {
        if (obj === this) return true
        if (obj !is Point) return false
        return obj.x == x && obj.y == y
    }
}

fun main(args: Array<String>) {
    println(Point(10, 20) == Point(10, 20))
    println(Point(10, 20) != Point(5, 5))
    println(null == Point(1, 2))
}

순서 연산자: compareTo

자바에서 정렬이나 최댓값, 최솟값 등 값을 비교해야 하는 알고리즘에 사용할 클래스는 Comparable 인터페이스를 구현해야 한다. Comparable에 들어있는 compareTo 메소드는 한 객체와 다른 객체의 크기를 비교해 정수로 나타내준다. 하지만 자바에는 이 메소드를 짧게 호출할 수 있는 방법이 없다.

코틀린도 똑같은 Comparable 인터페이스를 지원한다.

class Person(
        val firstName: String, val lastName: String
) : Comparable<Person> {

    override fun compareTo(other: Person): Int {
        return compareValuesBy(this, other,
            Person::lastName, Person::firstName)
    }
}

이 코드는 코틀린 표준 라이브러리의 compareValuesBy 함수를 사용해 compareTo를 쉽고 간결하게 정의할 수 있다.

fun main(args: Array<String>) {
    println("abc" < "bac")
}

컬렉션과 범위에 대해 쓸 수 있는 관례

in 관례

컬렉션이 지원하는 다른 연산자로는 in이 있다. In은 객체가 컬렉션에 들어있는지 검사한다. 그런 경우 in 연산자와 대응하는 함수는 contains다.

data class Point(val x: Int, val y: Int)

data class Rectangle(val upperLeft: Point, val lowerRight: Point)

operator fun Rectangle.contains(p: Point): Boolean {
    return p.x in upperLeft.x until lowerRight.x &&
           p.y in upperLeft.y until lowerRight.y
}

fun main(args: Array<String>) {
    val rect = Rectangle(Point(10, 20), Point(50, 50))
    println(Point(20, 30) in rect)
    println(Point(5, 5) in rect)
}

rangeTo 관례

범위를 만들려면 .. 구문을 사용해야 한다. 예를 들어 1..10은 1부터 10까지 모든 수가 들어있는 범위를 가리킨다.

fun main(args: Array<String>) {
    val n = 9
    println(0..(n + 1))
    (0..n).forEach { print(it) }
}

for 루프를 위한 iterator 관례

코틀린에서는 iterator 메소드를 확장 함수로 정의할 수 있다. 이런 성질로 인해 일반 자바 문자열에 대한 for 루프가 가능하다.

operator fun ClosedRange<LocalDate>.iterator(): Iterator<LocalDate> =
        object : Iterator<LocalDate> {
            var current = start

            override fun hasNext() =
                current <= endInclusive

            override fun next() = current.apply {
                current = plusDays(1)
            }
        }

fun main(args: Array<String>) {
    val newYear = LocalDate.ofYearDay(2017, 1)
    val daysOff = newYear.minusDays(1)..newYear
    for (dayOff in daysOff) { println(dayOff) }
}

구조 분해 선언과 component 함수

구조 분해를 사용하면 복합적인 값을 분해해서 여러 다른 변수를 한꺼번에 초기화할 수 있다.

data class Point(val x: Int, val y: Int)

fun main(args: Array<String>) {
    val p = Point(10, 20)
    val (x, y) = p
    println(x)
    println(y)
}

구조 분해 선언은 함수에서 여러 값을 반환할 때 유용하다. 여러 값을 한꺼번에 반환해야 하는 함수가 있다면 반환해야 하는 모든 값이 들어갈 데이터 클래스를 정의하고 함수의 반환 타입을 그 데이터 클래스로 바꾼다. 구조 분해 선언 구문을 사용하면 이런 함수가 반환하는 값을 쉽게 풀어서 여러 변수에 넣을 수 있다.

data class NameComponents(val name: String,
                          val extension: String)

fun splitFilename(fullName: String): NameComponents {
    val result = fullName.split('.', limit = 2)
    return NameComponents(result[0], result[1]) // 함수에서 데이터 클래스의 인스턴스를 반환한다. 
}

fun main(args: Array<String>) {
    val (name, ext) = splitFilename("example.kt") // 구조 분해 선언 구문을 사용해 데이터 클래스프를 푼다. 
    println(name)
    println(ext)
}

표준 라이브러리의 Pair나 Triple 클래스를 사용하면 함수에서 여러 값을 더 간단하게 반환할 수 있다. Pair나 Triple은 그 안에 담겨있는 원소의 의미를 말해주지 않으므로 경우에 따라 가독성이 떨어질 수 있는 반면, 직접 클래스를 작성할 필요가 없으므로 코드는 더 단순해진다.

구조 분해 선언과 루프

함수 본문 내의 선언문뿐 아니라변수 선언이 들어갈 수 있는 장소라면 어디든 구조 분해 선언을 사용할 수 있다.

fun printEntries(map: Map<String, String>) {
    for ((key, value) in map) {
        println("$key -> $value")
    }
}

fun main(args: Array<String>) {
    val map = mapOf("Oracle" to "Java", "JetBrains" to "Kotlin")
    printEntries(map)
}

이 간단한 예제는 두 가지 코틀린 관례를 활용한다. 하나는 객체를 이터페이션하는 관례고, 다른 하나는 구조 분해 선언이다. 또한 코틀린 라이브러리는 Map.Entry에 대한 확장 함수로 component1과 component2를 제공한다.

for (entry in map.entries) {
		val key = entry.component1()
		val value = entry.component2()
}

프로퍼티 접근자 로직 재활용: 위임 프로퍼티

위임 프로퍼티(delegated property)를 사용하면 값을 뒷받침하는 필드에 단순히 저장하는 것보다 더 복잡한 방식으로 작동하는 프로퍼티를 쉽게 구현할 수 있다. 또한 그 과정에서 접근자 로직을 매번 재구현할 필요도 없다.

위임은 객체가 직접 작업을 수행하지 않고 다른 도우미 객체가 그 작업을 처리하게 맡기는 디자인 패턴을 말한다. 이때 작업을 처리하는 도우미 객체를 위임 객체라고 부른다.

위임 프로퍼티 사용: by lazy()를 사용한 프로퍼티 초기화 지연

지연 초기화(lazy initialization)는 객체의 일부분을 초기화하지 않고 남겨뒀다가 실제로 그 부분의 값이 필요할 경우 초기화할 때 흔히 쓰이는 패턴이다. 초기화 과정에 자원을 많이 사용하거나 객체를 사용할 때마다 꼭 초기화하지 않아도 되는 프로퍼티에 대해 지연 초기화 패턴을 사용할 수 있다.

class Person(val name: String) {
    private var _emails: List<Email>? = null // 데이터를 저장하고 emails의 위임 객체 역활을 하는 _emails 프로퍼티

    val emails: List<Email>
       get() {
           if (_emails == null) {
               _emails = loadEmails(this) // 최초 접근 시 이메일을 가져온다. 
           }
           return _emails!! // 저장해 둔 데이터가 있으면 그 데이터를 반환한다. 
       }
}

fun main(args: Array<String>) {
    val p = Person("Alice")
    p.emails // 최초로 emails를 읽을 때 단 한번만 이메일을 가져온다. 
    p.emails
}

이런 코드를 만드는 일은 약간 성가시다. 지연 초기화해야 하는 프로퍼티가 많아지면 코드가 어떻게 될까? 게다가 이 구현은 스레드 안전하지 않아서 언제나 제대로 작동한다고 말할 수도 없다. 위임 프로퍼티를 사용하면 훨씬 더 간편해진다.

class Person(val name: String) {
    val emails by lazy { loadEmails(this) }
}

lazy 함수는 코틀린 관례에 맞는 시그니처의 getValue 메소드가 들어있는 객체를 반환한다. 따라서 lazy를 by 키워드와 함께 사용해 위임 프로퍼티를 만들 수 있다.

요약

  • 코틀린에서는 정해진 이름의 함수를 오버로딩함으로써 표준 수학 연산자를 오버로딩할 수 있다. 하지만 직접 새로운 연산자를 만들 수는 없다.

  • 비교 연산자는 equals와 compareTo 메소드로 변환된다.

  • 클래스에 get, set, contains라는 함수를 정의하면 그 클래스의 인스턴스에 대해 []와 in 연산을 사용할 수 있고, 그 객체를 코틀린 컬렉션 객체와 비슷하게 다룰 수 있다.

  • 미리 정해진 관례를 따라 tangeTo, iterator 함수를 정의하면 범위를 만들거나 컬렉션과 배열의 원소를 이터레이션할 수 있다.

  • 구조 분해 선언을 통해 한 객체의 상태를 분해해서 여러 변수에 대입할 수 있다. 함수가 여러 값을 한꺼번에 반환해야 하는 경우 구조 분해가 유용하다. 데이터 클래스에 대한 구조 분해는 거저 사용할 수 있지만, 커스텀 클래스의 인스턴스에서 구조 분해를 사용하려면 componentN 함수를 정의해야 한다.

  • 위임 프로퍼티를 통해 프로퍼티 값을 저장하거나 초기화하거나 읽거나 변경할때 사용하는 로직을 재활용할 수 있다. 위임 프로퍼티는 프레임워크를 만들 때 아주 유용하다.

  • 표준 라이브러리 함수인 lazy를 통해 지연 초기화 프로퍼티를 쉽게 구현할 수 있다.

  • Delegates.observable 함수를 사용하면 프로퍼티 변경을 관찰할 수 있는 관찰자를 쉽게 추가할 수 있다.

  • 맵을 위임 객체로 사용하는 위임 프로퍼티를 통해 다양한 속성을 제공하는 객체를 유연하게 다룰 수 있다.

Previous6장 코틀린 타입 시스템Next8장 고차 함수: 파라미터와 반환 값으로 람다 사용

Last updated 4 years ago

Was this helpful?

https://livebook.manning.com/book/kotlin-in-action/chapter-7/65