🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 널 가능성
  • NullPointerException 오류를 다루는 다른 방법
  • 안전한 호출 연산자: ?.
  • 엘비스 연산자: ?:
  • 안전한 캐스트: as?
  • 널 아님 단언: !!
  • let 함수
  • 나중에 초기화할 프로퍼티
  • 코틀린의 원시 타입
  • 원시 타입: Int, Boolean 등
  • 널이 될 수 있는 원시 타입: Int?, Boolean? 등
  • 숫자 변환
  • Any, Any?: 최상위 타입
  • Unit 타입: 코틀린의 void
  • Nothing 타입: 이 함수는 결코 정상적으로 끝나지 않는다
  • 컬렉션과 배열
  • 널 가능성과 컬렉션
  • 읽기 전용과 변경 가능한 컬렉션
  • 코틀린 컬렉션과 자바
  • 객체의 배열과 원시 타입의 배열
  • 요약

Was this helpful?

  1. STUDY
  2. KOTLIN IN ACTION

6장 코틀린 타입 시스템

KOTLIN IN ACTION 6장을 요약한 내용입니다.

널 가능성

코틀린을 비롯한 최신 언어에서 null에 대한 접근 방법은 가능한 한 이 문제를 실행시점에서 컴파일 시점으로 옮기는 것이다. 널이 될 수 있는지 여부를 타입 시스템에 추가함으로써 컴파일러가 여러 가지 오류를 컴파일 시 미리 감지해서 실행 시점에 발생할 수 있는 예외의 가능성을 줄일 수 있다.

NullPointerException 오류를 다루는 다른 방법

자바에도 NullPointerException문제를 해결하는 데 도움을 주는 도구가 있다. 예를 들어 @Nullable이나 @NotNull을 사용할 수 있다. 하지만 이는 IDE에 종속된 기능으로 일관적인 NPE에 대한 해결책을 보장할 수 없고 오류가 발생할 위치를 정확하게 찾기 위해 적절한 위치에 애노테이션을 추가하는 일도 쉽지는 않다. 이 문제를 해결하는 다른 방법은 nullㄷ 새니 자바8에 새로 도입된 Optional 타입 등의 null을 감싸는 특별한 래퍼 타입을 활용할 수 있다. 하지만 이도 몇 가지 단점이 있다.

코드가 더 지저분해지고 래퍼가 추가됨에 따라 실행 시점에 성능이 저하되며 전체 에코시스템에서 일관성 있게 활용하기 어렵다.

안전한 호출 연산자: ?.

?.은 null 검사와 메소드 호출을 한 번의 연산으로 수행한다. 예를 들어 s?.toUpperCase()는 훨씬 더 복잡한 if(s ≠ null) s.toUpperCase() else null과 같다.

class Address(val streetAddress: String, val zipCode: Int,
              val city: String, val country: String)

class Company(val name: String, val address: Address?)

class Person(val name: String, val company: Company?)

fun Person.countryName(): String {
   val country = this.company?.address?.country
   return if (country != null) country else "Unknown"
}

fun main(args: Array<String>) {
    val person = Person("Dmitry", null)
    println(person.countryName())
}

?. 연산자를 사용하면 다른 추가 검사 없이 Person의 회사 주소에서 country 프로퍼티를 단 한 줄로 가져올 수 있다.

엘비스 연산자: ?:

코틀린은 null 대신 사용할 디폴트 값을 지정할 때 편리하게 사용할 수 있는 연산자를 제공한다. 그 연산자는 엘비스(elvis) 연산자라고 한다.

코틀린에서는 return이나 throw 등의 연산도 식이다. 따라서 엘비스 연산자의 유항에 return, throw 등의 연산을 넣을 수 있고, 엘비스 연산자를 더욱 편하게 사용할 수 있다.

class Address(val streetAddress: String, val zipCode: Int,
              val city: String, val country: String)

class Company(val name: String, val address: Address?)

class Person(val name: String, val company: Company?)

fun printShippingLabel(person: Person) {
    val address = person.company?.address
      ?: throw IllegalArgumentException("No address")
    with (address) {
        println(streetAddress)
        println("$zipCode $city, $country")
    }
}

fun main(args: Array<String>) {
    val address = Address("Elsestr. 47", 80687, "Munich", "Germany")
    val jetbrains = Company("JetBrains", address)
    val person = Person("Dmitry", jetbrains)
    printShippingLabel(person)
    printShippingLabel(Person("Alexey", null))
}

printShippingLabel 함수는 모든 정보가 제대로 있으면 주소를 출력한다. 주소가 없으면 그냥 NullPointerException을 던지는 대신에 의미 있는 오류를 발생시킨다.

안전한 캐스트: as?

as?는 값을 대상 타입으로 변환할 수 없으면 null을 반환한다.

class Person(val firstName: String, val lastName: String) {
   override fun equals(o: Any?): Boolean {
      val otherPerson = o as? Person ?: return false

      return otherPerson.firstName == firstName &&
             otherPerson.lastName == lastName
   }

   override fun hashCode(): Int =
      firstName.hashCode() * 37 + lastName.hashCode()
}

fun main(args: Array<String>) {
    val p1 = Person("Dmitry", "Jemerov")
    val p2 = Person("Dmitry", "Jemerov")
    println(p1 == p2)
    println(p1.equals(42))
}

이 패턴을 사용하면 파라미터로 받은 값이 원하는 타입인지 쉽게 검사하고 캐스트할 수 있고, 타입이 맞지 않으면 쉽게 false를 반환할 수 있다.

널 아님 단언: !!

느낌표를 이중(!!)으로 사용하면 어떤 값이든 널이 될 수 없는 타입으로 (강제로) 바꿀 수 있다. 실제 널에 대해 !!를 적용하면 NPE가 발생한다.

fun ignoreNulls(s: String?) {
    val sNotNull: String = s!!
    println(sNotNull.length)
}

어떤 함수가 값이 널인지 검사한 다음에 다른 함수를 호출한다고 해도 컴파일러는 호출된 함수 안에서 안전하게 그 값을 사용할 수 있음을 인식할 수 없다.

하지만 사용시 기억해야만 하는 함정이 있다. !!를 넣에 대해 사용해서 발생하는 예외의 스택 트레이스(stack trace)에는 어떤 파일의 몇 번째 줄인지에 대한 정보는 들어있지만 어떤식에서 예외가 발생했는지에 대한 정보는 들어있지 않다. 어떤 값이 널이었는지 확실히 하기 위해 여러 !! 단언문을 한 줄에 함께 쓰는 일을 피하라.

person.company!!.address!!.country // 이런 식으로 코드를 작성하지 말라

let 함수

let 함수를 사용하면 널이 될 수 있는 식을 더 쉽게 다룰 수 있다. let 함수를 안전한 호출 연산자와 함께 사용하면 원하는 식을 평가해서 결과가 널인지 검사한 다음에 그 결과를 변수에 넣는 작업을 간단한 식을 사용해 한꺼번에 처리할 수 있다.

let 함수는 자신의 수신 객체를 인자로 전달받은 람다에게 넘긴다. 널이 될 수 있는 값에 대해 안전한 호출 구문을 사용해 let을 호출하되 널이 될 수 없는 타입을 인자로 받는 람다를 let에 전달한다.

fun sendEmailTo(email: String) {
    println("Sending email to $email")
}

fun main(args: Array<String>) {
    var email: String? = "yole@example.com"
    email?.let { sendEmailTo(it) }
    email = null
    email?.let { sendEmailTo(it) }
}

let을 쓰면 긴 식의 결과를 저장하는 변수를 따로 만들 필요가 없다.

여러 값이 널인지 검사해야 한다면 let 호출을 중첩시켜서 처리할 수 있다. 그렇게 let을 중첩시켜 처리하면 코드가 복잡해져서 알아보기 어려워진다. 그런 경우 일반적인 if를 사용해 모든 값을 한꺼번에 검사하는 편이 낫다.

나중에 초기화할 프로퍼티

코틀린에서 클래스 안의 널이 될 수 없는 프로퍼티를 생성자 안에서 초기화할지 않고 특별한 메소드 안에서 초기화할 수는 없다. 코틀린에서는 일반적으로 생성자에서 모든 프로퍼티를 초기화해야 한다. 게다가 프로퍼티 타입이 널이 될 수 없는 타입이라면 반드시 널이 아닌 값으로 그 프로퍼티를 초기화해야 한다. 그런 초기화 값을 제공할 수 없으면 널이 될 수 있는 타입을 사용할 수밖에 없다. 하지만 널이 될 수 있는 타입을 사용하면 모든 프로퍼티 접근에 널 검사를 넣거나 !! 연산자를 써야 한다.

class MyService {
    fun performAction(): String = "foo"
}

class MyTest {
    private var myService: MyService? = null // null로 초기화하기 위해 널이 될 수 있는 타입인 프로퍼티를 선언한다. 

    @Before fun setUp() {
        myService = MyService() // setUp 메소드 안에서 진짜 초깃값을 지정한다. 
    }

    @Test fun testAction() {
        Assert.assertEquals("foo",
            myService!!.performAction()) // 반드시 널 가능성에 신경 써야 한다. !!나 ?을 꼭 써야 한다. 
    }
}

이 코드는 보기 나쁘다. 특히 프로퍼티를 여러 번 사용해야 하면 코드가 더 못생겨진다. 이를 해결하기 위해 myService 프로퍼티를 나중에 초기화(late-initialized)할 수 있다. lateinit 변경자를 붙이면 프로퍼티를 나중에 초기화할 수 있다.

class MyService {
    fun performAction(): String = "foo"
}

class MyTest {
    private lateinit var myService: MyService // 초기화하지 않고 널이 될 수 없는 프로퍼티를 선언한다. 

    @Before fun setUp() {
        myService = MyService() 
    }

    @Test fun testAction() {
        Assert.assertEquals("foo",
            myService.performAction()) // 널 검사를 수행하지 않고 프로퍼티를 사용한다. 
     }
}

이제 널이 될 수 없는 타입이라 해도 더 이상 생성자 안에서 초기화할 필요가 없다.

코틀린의 원시 타입

원시 타입: Int, Boolean 등

원시 타입의 변수에는 그 값이 직접 들어가지만, 참조 타입의 변수에는 메모리상의 객체 위치가 들어간다. 자바는 참조 타입이 필요한 경우 특별한 래퍼 타입(Integer 등)으로 원시 타입 값을 감싸서 사용한다. 코틀린은 원시 타입과 래퍼 타입을 구분하지 않으므로 항상 같은 타입을 사용한다. 래퍼 타입을 따로 구분하지 않으면 편리하다. 더 나아가 코틀린에서는 숫자 타입 등 원시 타입의 값에 대해 메소드를 호출할 수 있다.

fun showProgress(progress: Int) {
		val percent = progress.coerceIn(0, 100)
		println("We're ${percent}% done!")
}

코틀린은 실행 시점에 숫자 타입이 가능한 한 가장 효율적인 방식으로 표현된다. 대부분의 경우 코틀린의 Int 타입은 자바 int 타입으로 컴파일 된다.

자바 원시 타입에 해당하는 타입은 다음과 같다.

  • 정수 타입 : Byte, Short, Int, Long

  • 부동소수점 수 타입 : Float, Double

  • 문자 타입 : Char

  • 불리언 타입 : Boolean

널이 될 수 있는 원시 타입: Int?, Boolean? 등

null 참조를 자바의 참조 타입의 변수에만 대입할 수 있기 때문에 널이 될 수 있는 코틀린 타입은 자바 원시 타입으로 표현할 수 없다. 따라서 코틀린에서 널이 될 수 있는 원시 타입을 사용하면 그 타입은 자바의 래퍼 타입으로 컴파일된다.

data class Person(val name: String,
                  val age: Int? = null) {

    fun isOlderThan(other: Person): Boolean? {
        if (age == null || other.age == null)
            return null
        return age > other.age
    }
}

fun main(args: Array<String>) {
    println(Person("Sam", 35).isOlderThan(Person("Amy", 42)))
    println(Person("Sam", 35).isOlderThan(Person("Jane")))
}

// false
// null

Person 클래스에 선언된 age 프로퍼티의 값은 Integer로 저장된다. 코틀린에서적절한 타입을 찾으려면 그 변수나 프로퍼티에 널이 들어갈 수 있는지만 고민하면 된다.

숫자 변환

코틀린과 자바의 가장 큰 차이점 중 하나는 숫자를 변환하는 방식이다. 코틀린은 한 타입의 숫자를 다른 타입의 숫자로 자동 변환하지 않는다. 결과 타입이 허용하는 숫자의 범위가 원래 타입의 범위보다 넓은 경우 조차도 자동 변환은 불가능하다.

val i = 1
val l: long = i // "Error: type mismatch" 컴파일 오류 발생
val l2: long = i.toLong()

코틀린은 모든 원시 타입에 대한 변환 함수를 제공한다. 그런 변환 함수의 이름은 toByte(), toShort(), toChar() 등과 같다. 즉, 어떤 타입을 더 표현 범위가 넓은 타입으로 변환하는 함수도 있고, 타입을 범위가 더 표현 범위가 좁은 타입으로 변환하면서 값을 벗어나는 경우에는 일부를 잘라내는 함수(Long.toInt())도 있다.

문자열을 숫자로 변환하기

코틀린 표준 라이브러리는 문자열을 원시 타입으로 변환하는 여러 함수를 제공한다. (toInt, toByte, toBoolean 등)

>>> println("42".toInt()) 42

이런 함수는 문자열의 내용을 각 원시 타입을 표기하는 문자열로 파싱한다. 파싱에 실패하면 NumberFormatException이 발생한다.

Any, Any?: 최상위 타입

자바에서 Object가 클래스 계층의 최상위 타입이듯 코틀린에서는 Any 타입이 모든 널이 될 수 없는 타입의 조상 타입이다. 하지만 코틀린에서는 Any가 Int 등의 원시 타입을 포함한 모든 타입의 조상 타입이다.

val answer: Any = 42 // Any가 참조 타입이기 때문에 42가 박싱된다. 

Unit 타입: 코틀린의 void

코틀린의 Unit 타입은 자바 void와 같은 기능을 한다. 관심을 가질 만한 내용을 전혀 반환하지 않는 함수의 반환 타입으로 Unit을 쓸 수 있다. 이는 반환 타입 선언 없이 정의한 블록이 본문인 함수와 같다.

코틀린의 Unit이 자바 void와 다른 점은 무엇일까?

Unit은 모든 기능을 갖는 일반적인 타입이며, void와 달리 Unit을 타입 인자로 쓸 수 있다. Unit 타입에 속한 값은 단 하나뿐이며, 그 이름도 Unit이다. Unit 타입의 함수는 Unit 값을 묵시적으로 반환한다. 이 두 특성은 제네릭 파라미터를 반환하는 함수를 오버라이드하면서 반환 타입으로 Unit을 쓸 때 유용하다.

interface Processor<T> {
		fun process() : T
}

class NoResultProcessor : Processor<Unit> {
		override fun process() { // Unit을 반환하지만 타입을 저장할 필요는 없다. 
				// 업무 처리 코드 // 여기서 return을 명시할 필요가 없다. 
		}
}

함수형 프로그래밍에서전통적으로 Unit은 '단 하나의 인스턴스만 갖는 타입'을 의미해 왔고 바로 그 유일한 인스턴스의 유무가 자바 void와 코틀린 Unit을 구분하는 가장 큰 차이다. 어쩌면 자바 등의 명령형 프로그래밍 언어에서 관례적으로 사용해온 Void라는 이름을 사용할 수도 있겠지만, 코틀린에는 Nothing이라는 전혀 다른 기능을 하는 타입이 하나 존재한다.

Nothing 타입: 이 함수는 결코 정상적으로 끝나지 않는다

코틀린에는 결코 성공적으로 값을 돌려주는 일이 없으므로 '반환 값'이라는 개념 자체가 의미 없는 함수가 일부 존재한다.

fun fail(message: String) : Nothing {
		throw IllegalStateException(message)
}

val address = company.address ?: fail("No address")
println(address.city)

Nothing 타입은 아무 값도 포함하지 않는다. 따라서 Nothing은 함수의 반환 타입이나 반환 타입으로 쓰일 타입 파라미터만 쓸 수 있다. 컴파일러는 Nothing이 반환 타입인 함수가 결코 정상 종료되지 않음을 알고 그 함수를 호출하는 코드를 분석할 때 사용한다.

컬렉션과 배열

널 가능성과 컬렉션

컬렉션 안에 널 값을 넣을 수 있는지 여부는 어떤 변수의 값이 널이 될 수 있는지 여부와 마찬가지로 중요하다.

fun addValidNumbers(numbers: List<Int?>) {
    var sumOfValidNumbers = 0
    var invalidNumbers = 0
    for (number in numbers) {
        if (number != null) {
            sumOfValidNumbers += number
        } else {
            invalidNumbers++
        }
    }
    println("Sum of valid numbers: $sumOfValidNumbers")
    println("Invalid numbers: $invalidNumbers")
}

리스트의 원소에 접근하면 Int? 타입의 값을 얻는다. 따라서 그 값을 산술식에 사용하기 전에 널 여부를 검사해야 한다. 널이 될 수 있는 값으로 이뤄진 컬렉션으로 널 값을 걸러내는 경우가 자주 있어서 코틀린 표준 라이브러리는 그런 일을 하는 filterNotNull이라는 함수를 제공한다.

fun addValidNumbers(numbers: List<Int?>) {
    val validNumbers = numbers.filterNotNull()
    println("Sum of valid numbers: ${validNumbers.sum()}")
    println("Invalid numbers: ${numbers.size - validNumbers.size}")
}

읽기 전용과 변경 가능한 컬렉션

코틀린 컬렉션과 자바 컬렉션을 나누는 가장 중요한 특성 하나는 코틀린에서는 컬렉션안의 데이터에 접근하는 인터페이스와 컬렉션 안의 데이터를 변경하는 인터페이스를 분리했다는 점이다.

일반적인 읽기 전용 라이브러리를 사용하려면 kotlin.collections.Collection 라이브러리를 사용하면 된다. 그러나 컬렉션의 데이터를 수정하려면 kotlin.collections.MutableCollection 인터페이스를 사용하면 원소를 추가하거나, 삭제하거나, 컬렉션 안의 원소를 모두 지우는 등의 메소드를 더 제공한다.

코틀린 컬렉션과 자바

모든 코틀린 컬렉션은 그에 상응하는 자바 컬렉션 인터페이스의 인스턴스라는 점은 사실이다. 하지만 코틀린은 모든 자바 컬렉션 인터페이스마다 읽기 전용 인터페이스와 변경 가능한 인터페이스라는 두 가지 표현을 제공한다.

이런 성질로 인해 컬렉션의 변경 가능성과 관련해 중요한 문제가 생긴다. 자바는 읽기 전용 컬렉션과 변경 가능 컬렉션을 구분하지 않으므로, 코틀린에서 읽기 전용 Collection으로 선언된 객체라도 자바 코드에서는 그 컬렉션 객체의 내용을 변경할수 있다.

/* Java */
// CollectionUtils.java
public class CollectionUtils {
    public static List<String> uppercaseAll(List<String> items) {
        for (int i = 0; i < items.size(); i++) {
            items.set(i, items.get(i).toUpperCase());
        }
        return items;
    }
}

// Kotlin
// collections.kt
fun printInUppercase(list: List<String>) {
    println(CollectionUtils.uppercaseAll(list))
    println(list.first())
}

객체의 배열과 원시 타입의 배열

fun main(args: Array<String>) {
    for (i in args.indices) {
         println("Argument $i is: ${args[i]}")
    }
}

코틀린 배열은 타입 파라미터를 받는 클래스다. 배열의 원소 타입은 바로 그 타입 파라미터에 의해 정해진다. 코틀린에서 배열을 만드는 방법은 다양하다.

  • arrayOf 함수에 원소를 넘기면 배열을 만들 수 있다.

  • arrayOfNulls 함수에 정수 값을 인자로 넘기면 모든 원소가 null이고 인자로 넘긴 값과 크기가 같은 배열을 만들 수 있다. 물론 원소 타입이 널이 될 수 있는 타입인 경우에만 이 함수를 쓸 수 있다.

  • Array 생성자는 배열 크기와 람다를 인자로 받아서 람다를 호출해서 각 배열 원소를 초기화해준다. arryOf를 쓰지 않고 각 원소가 널이 아닌 배열을 만들어야 하는 경우 이 생성자를 사용한다.

fun main(args: Array<String>) {
    val letters = Array<String>(26) { i -> ('a' + i).toString() }
    println(letters.joinToString(""))
}

fun main(args: Array<String>) {
    val strings = listOf("a", "b", "c")
    println("%s/%s/%s".format(*strings.toTypedArray()))
}

fun main(args: Array<String>) {
    val squares = IntArray(5) { i -> (i+1) * (i+1) }
    println(squares.joinToString())
}

fun main(args: Array<String>) {
    args.forEachIndexed { index, element ->
        println("Argument $index is: $element")
    }
}

요약

  • 코틀린은 널이 될 수 있는 타입을 지원해 NullPointerException 오류를 컴파일 시점에 감지할 수 있다.

  • 코틀린의 안전한 호출(?.), 엘비스 연산자(?:), 널 아님 단언(!!), let 함수 등을 사용하면 널이 될 수 있는 타입을 간결한 코드로 다룰 수 있다.

  • as? 연산자를 사용하면 값을 다른 타입으로 취급한다. 개발자는 플랫폼 타입을 널이 될 수 있는 타입으로도, 널이 될 수 없는 타입으로도 사용할 수 있다.

  • 코틀린에서는 수를 표현하는 타입(Int 등)이 일반 클래스와 똑같이 생겼고 일반 클래스와 똑같이 동작한다. 하지만 대부분 컴파일러는 숫자 타입을 자바 원시 타입(int 등)으로 컴파일한다.

  • 널이 될 수 있는 원시 타입(Int? 등)은 자바의 박싱한 원시 타입에 대응한다.

  • Any 타입은 다른 모든 타입의 조상 타입이며, 자바의 Object에 해당한다. Unit은 자바의 void와 비슷하다.

  • 정상적으로 끝나지 않는 함수의 반환 타입을 지정할 때 Nothing 타입을 사용한다.

  • 코틀린 컬렉션은 표준 자바 컬렉션 클래스를 사용한다. 하지만 코틀린은 자바보다 컬렉션을 더 개선해서 읽기 전용 컬렉션과 변경 가능한 컬렉션을 구별해 제공한다.

  • 자바 클래스를 코틀린에서 확장하거나 자바 인터페이스를 코틀린에서 구현하는 경우 메소드파라미터의 널 가능성과 변경 가능성에 대해 깊이 생각해야 한다.

  • 코틀린의 Array 클래스는 일반 제네릭 클래스처럼 보인다. 하지만 Array는 자바 배열로 컴파일된다.

  • 원시 타입의 배열은 IntArray와 같이 각 타입에 대한 특별한 배열로 표현된다.

Previous5장 람다로 프로그래밍Next7장 연산자 오버로딩과 기타 관례

Last updated 4 years ago

Was this helpful?

https://livebook.manning.com/book/kotlin-in-action/chapter-6