🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 네 개의 영역
  • 계층 구조 아키텍처
  • DIP
  • DIP 주의사항
  • DIP와 아키텍처
  • 도메인 영역의 주요 구성요소
  • 엔티티
  • 밸류
  • 애그리거트
  • 리포지터리
  • 도메인 서비스
  • 엔티티와 밸류
  • 애그리거트
  • 리포지터리
  • 인프라스트럭처 개요
  • 모듈 구성

Was this helpful?

  1. STUDY
  2. DDD START!

2장 아키텍처 개요

최범균의 DDD START! 2장을 요약한 내용입니다.

Previous1장 도메인 모델 시작Next3장 애그리거트

Last updated 4 years ago

Was this helpful?

네 개의 영역

아키텍처를 설계할 때 출현하는 전형적인 영역이 '표현', '응용', '도메인', '인프라스트럭처'의 네 영역이다. 표현 영역을 통해 사용자의 요청을 전달받는 응용 영역은 시스템이 사용자에게 제공해야 할 기능을 구현한다. 응용 영역은 기능을 구현하기 위해 도메인 영역의 도메인 모델을 사용한다.

응용 서비스는 로직을 직접 수행하기보다는 도메인 모델에 로직 수행을 위임한다.

그림 2.2 응용 영역은 도메인 모델을 이용해서 사용자에게 제공할 기능을 구현한다. 실제 도메인 로직 구현은 도메인 모델에 위임한다.

도메인 영역은 도메인 모델을 구현한다. 1장에서 봤던 Order, OrderLine, ShippingInfo와 같은 도메인 모델이 이 영역에 위치한다. 도메인 모델은 도메인의 핵심 로직을 구현한다. 주문 도메인의 경우 '배송지 변경', '결제 완료', '주문 총액 계산'과 같은 핵심 로직을 도메인 모델에서 구현한다.

인프라 스트럭처 영역은 구현 기술에 대한 것을 다룬다. 이 영역은 논리적인 개념을 표현하기보다는 실제 구현을 다룬다.

  • RDBMS 연동을 처리

  • 메시징 큐에 메시지를 전송하거나 수신하는 기능 구현

  • 몽고DB나 HBase를 사용해서 데이터베이스 연동

  • SMTP를 이용한 메일 발송 기능 구현

  • HTTP 클라이언트를 이용해서 REST API 호출

도메인 영역, 응용 영역, 표현 영역은 구현 기술을 사용한 코드를 직접 만들지 않는다. 대신 인프라스트럭처 영역에서 제공하는 기능을 사용해서 필요한 기능을 개발한다.

계층 구조 아키텍처

계층 구조는 그 특성상 상위 계층에서 하위 계층으로서의 의존만 존재하고 하위 계층은 상위 계층에 의존하지 않는다. (인프라스트럭처 계층이 도메인에 의존하거나 도메인이 응용 계층에 의존하지는 않는다.)

계층 구조를 엄격하게 적용하면 상위 계층은 바로 아래의 계층에만 의존을 가져야하지만 구현의 편리함을 위해 계층 구조를 유연하게 적용한다. (응용 계층은 바로 아래 계층인 도메인 계층에 의존하지만 외부 시스템과의 연동을 위해 더 아래 계층인 인프라스트럭처 계층에 의존하기도 한다)

그림 2.5 전형적인 계층 구조상의 의존 관계

응용 영역과 도메인 영역은 DB나 외부 시스템 연동을 위해 인프라스트럭처의 기능을 사용하므로 이런 계층 구조를 사용하는 것은 직관적으로 이해하기 쉽다. 하지만, 표현/응용 계층이 상세한 구현 기술을 다루는 인프라스트럭처 계층에 종속될수 있는 위험이 있다.

도메인의 가격 계산 규칙을 예로 들어보자. 할인 금액 계산 로직이 복잡하여 외부 Drools라는 룰 엔진을 사용해서 로직을 수행하는 인프라스트럭처 영역에서 구현하였다.

public class DroolsRuleEngine {
	private KieContainer kContainer;

	public void evalute(String sessionName, List<?> facts) {
		...
	}
}

응용 영역은 가격 계산을 위해 인프라스트럭처 영역의 DroolsRuleEngine을 사용한다.

public class CalculateDiscountService {
	private DroolsRuleEngine ruleEngine;

	public Money calculateDiscount(OrderLine orderLines, String customerId) {
		Customer customer = findCusotmer(customerId);
		MutableMoney money = new MutableMoney(0);
		facts.addAll(orderLines);
		ruleEngine.evalute("discountCalculation", facts);
		return money.toImmutableMoney();
	}
}

이는 두 가지 문제를 안고 있다.

  • CalculateDiscountService만 테스트하기 어렵다. 이 클래스를 테스트하려면 RuleEngine이 완벽하게 동작해야 한다. RuleEngine 클래스와 관련 설정 파일을 모두 만등 이후에 비로소 테스트가 가능할 것이다.

  • 구현 방식을 변경하기 어렵다. calculateDiscount 메소드 내에서 사용하는 'discountCalculation'문자열은 Drools의 세션 이름을 의미한다. 따라서, Drools의 세션 이름을 변경하면 CalculateDiscountService의 코드도 함께 변경해야 한다.

인프라스트럭처에 의존하면 '테스트 어려움'과 '기능 확장의 어려움'이라는 두 가지 문제가 발생하는 것을 알았다.

DIP

CalculateDiscountService는 고수준 모듈이다. 고수준 모듈의 기능을 구현하려면 여러 하위 기능이 필요하다. (고객정보 구하기, 할인 금액 계산하기) 저수준 모듈은 하위 기능을 실제로 구현한 것이다.

고수준 모듈이 제대로 동작하려면 저수준 모듈을 사용해야 한다. 그런데 고수준 모듈이 저수준 모듈을 사용하면 앞서 계층 구조 아키텍처에서 언급했던 두 가지 문제가 발생한다.

DIP는 이를 해결하기 위해 저수준 모듈이 고수준 모듈에 의존하도록 바꾼다. 원리는 추상화한 인터페이스에 있다.

public interface RuleDiscounter {
	public Money applyRules(Customer customer, List<OrderLine> orderLines);
}

CalculateDiscountService가 RuleDiscounter를 이용하도록 변경해보자.

public class CalculateDiscountService {
	private CustomerRepository customerRepository;
	private RuleDiscounter ruleDiscounter;

	public Money calculateDiscount(OrderLine orderLines, String customerId) {
		Customer customer = customerRepository.findCusotmer(customerId);
		return ruleDiscounter.applyRules(customer, orderLines);
	}
}

DroolsRuleEngine 클래스를 RuleDiscounter 인터페이스로 구현체로 변경해보자.

public class DroolsRuleDiscounter implements RuleDiscounter{
	private KieContainer kContainer;

	@Override
	public void applyRules(Customer customer, List<OrderLine> orderLines) {
		...
	}
}

그림 2.8 DIP를 적용한 구조

CalculateDiscountService는 '룰을 이용한 할인 금액 계산'을 추상화한 RuleDiscounter 인터페이스에 의존할 뿐이다. DroolsRuleDiscounter는 고수준의 하위 기능인 RuleDiscounter를 구현한 것이므로 저수준 모듈에 속한다.

CalculateDiscountService가 제대로 동작하는지 테스트하려면 CustomerRepository와 RuleDiscounter를 구현한 객체가 필요하다. 만약 CalculateDiscountService가 저수준 모듈에 직접 의존했다면 저수준 모듈이 만들어지기 전까지 테스트를 할 수가 없었겠지만 CustomerRepository와 RuleDiscounter는 인터페이스이므로 대용 객체를 사용해서 테스트를 진행할 수 있다. 다음은 이를 활용한 테스트 코드이다.

public class CalculateDiscountServiceTest {
	@Test(expect = NoCustomerException.class);
	public void noCusotmer_thenExceptionShouldBeThrown() {
		// 테스트 목적의 대용 객체
		CustomerRepository stubRepo = mock(CustomerRepository.class);
		when(stubRepo.findById("noCustId")).thenReturn(null);

		RuleDiscounter stubRule = (cust, lines) -> null;

		// 대용 객체를 주입받아 테스트 진행
		CalculateDiscountService calDisSvc = 
				new CalculateDiscountService(stubRepo, stubRule);
		calDisSvc.calculateDiscount(someLines, "noCustId");
	}
}

실제 구현 대신 스텁이나 Mock과 같은 테스트 목적의 대용 객체를 사용해서 거의 모든 상황을 테스트할 수 있다.

이렇게 실제 구현 없이 테스트를 할 수 있는 이유는 DIP를 적용해서 고수준 모듈이 저수준 모듈에 의존하지 않도록 했기 때문이다.

DIP 주의사항

DIP를 잘못 생각하면 단순히 인터페이스와 구현 클래스를 분리하는 정도로 받아들일 수 있다. DIP의 핵심은 고수준 모듈이 저수준 모듈에 의존하지 않도록 하기 위함인데 DIP를 적용한 결과 구조만 보고 아래 그림과 같이 저수준 모듈에서 인터페이스를 추출하는 경우가 있다.

그림 2.10 잘못된 DIP 적용 예

이 구조는 잘못된 구조다. 이 구조에서 도메인 영역은 구현 기술을 다루는 인프라스트럭처 영역에 의존하고 있다. 즉, 여전히 고수준 모듈이 저수준 모듈에 의존하고 있는 것이다. DIP를 적용할 때 하위 기능을 추상화한 인터페이스는 고수준 모듈 관점에서 도출한다. 즉, '할인 금액 계산'을 추상화한 인터페이스는 저수준 모듈이 아닌 고수준 모듈에 위치한다.

그림 2.11 하위 기능을 추상화한 인터페이스는 고수준 모듈에 위치한다.

DIP와 아키텍처

인프라스트럭처 영역은 구현 기술을 다루는 저수준 모듈이고 응용 역영과 도메인 영역은 고수준 모듈이다. 인프라스트럭처 계층의 가장 하단에 위치하는 계층형 구조와 달리 아키텍처에 DIP를 적용하면 아래 그림과 같이 인프라스트럭처 영역이 응용 영역과 도메인 영역에 의존(상속)하는 구조가 된다.

그림 2.14 DIP를 적용하면 응용 영역과 도메인 영역에 영향을 최소화하면서 구현체를 변경하거나 추가할 수 있다.

도메인 영역의 주요 구성요소

엔티티

고유의 식별자를 갖는 객체로 자신의 라이프사이클을 갖는다. 도메인의 고유한 개념을 표현하며 해당 데이터와 관련된 기능을 함께 제공한다.

밸류

고유의 식별자를 갖지 않는 객체로 주로 개념적으로 하나인 도메인 객체의 속성을 표현할 때 사용된다.

애그리거트

애그리거트는 관련된 엔티티와 밸류 객체를 개념적으로 하나로 묶은 것이다. 예를 들어 주문과 관련된 Order 엔티티, OrderLine 밸류, Orderer 밸류 객체를 '주문' 애그리거트로 묶을 수 있다.

리포지터리

도메인 모델의 영속성을 처리한다.

도메인 서비스

특정 엔티티에 속하지 않은 도메인 로직을 제공한다. '할인 금액 계산'은 상품, 쿠폰, 회원 등급, 구매 금액 등 다양한 조건을 이용해서 구현하게 되는데, 이렇게 도메인 로직이 여러 엔티티와 밸류를 필요로 할 경우 도메인 서비스에서 로직을 구혀한다.

엔티티와 밸류

도메인 모델의 엔티티는 단순히 데이터를 담고 있는 데이터 구조라기보다는 데이터와 함께 기능을 제공하는 객체이다. 도메인 관점에서 기능을 구현하고 기능 구현을 캡슐화해서 데이터가 임의로 변경되는 것을 막는다. 또 다른 차이점은 도메인 모델의 엔티티는 두 개 이상의 데이터가 개념적으로 하나인 경우 밸류 타입을 이용해서 표현할 수 있다.

밸류는 불변으로 구현하는 것을 권장하는데, 이는 엔티티의 밸루 타입 데이터를 변경할 때 객체 자체를 완전히 교체한다는 것을 의미한다.

애그리거트

도메인이 커질수록 개발할 도메인 모델도 커지면서 많은 엔티티와 밸류가 출현한다. 엔티티와 밸류 개수가 많아지면 많아질수록 모델은 점점 더 복잡해진다. 도메인 모델이 복잡해지면 개발자가 전체 구조가 아닌 한 개 엔티티와 밸류에만 집중하게 되는 경우가 발생한다. 그러게 되면 큰 수준에서 모델을 이해하지 못해 전체적으로 모델을 관리할 수 없는 상황에 빠질 수 있다. 그래서 이를 해결하기 위해 도움이되는 것이 바로 애그리거트이다.

애그리거트는 관련 객체를 하나로 묶은 군집이다.

그림 2.17 관련된 객체를 애그리거트로 묶으면 복잡한 도메인 모델을 관리하는 데 도움이 된다.

애그리거트를 사용하면 개별 객체가 아닌 관련 객체를 묶어서 객체 군집 단위로 모델을 바라볼 수 있게 된다. 개별 객체 간의 관계가 아닌 애그리거트 간의 관계로 도메인 모델을 이해하고 구현할 수 있게 되며, 이를 통해 큰 틀에서 도메인 모델을 관리할 수 있게 된다.

애그리거트는 군집에 속한 객체들을 관리하는 루트 엔티티를 갖는다. 루트 엔티티는 애그러거트에 속해 있는 엔티티와 밸류 객체를 이용해서 애그리거트가 구현해야 할 기능을 제공한다. 애그리거트를 사용하는 코드는 애그리거트 루트가 제공하는 기능을 실행하고 애그리거트 루트를 통해서 간접적으로 애그리거트 내의 다른 엔티티나 밸루 객체에 접근하게 된다. 이는 애그리거트의 내부 구현을 숨겨서 애그리거트 단위로 구현을 캡슐화할 수 있도록 돕는다.

public class Order {
	...
	public void changeShippingInfo(ShippingInfo shippinginfo) {
		checkShippingInfoChangeable(); // 배송지 변경 가능 여부 확인
	}

	private Boolean checkShippingInfoChangeable() {
		...
	}
}

주문 애그리거트는 Order를 통하지 않고 ShippingInfo를 변경할 수 있는 방법을 제공하지 않는다.

애그리거트를 구현할 때는 고려할 것이 많다. 애그리거트를 어떻게 구성했느냐에 따라 구현이 복잡해지기도 하고 트랜잭션 범위가 달라지기도 한다. 또한 선택한 구현 기술에 따라 애그리거트 구현에 제약이 생기기도 한다.

리포지터리

엔티티나 밸류가 요구사항에서 도출되는 도메인 모듈이라면 리포지터리는 구현을 위한 도메인 모델이다. 리포지터리는 애그리거트 단위로 도메인 객체를 저장하고 조회하는 기능을 정의한다.

도메인 모델 관점에서 리포지터리는 도메인 객체를 영속화하는 데 필요한 기능을 추상화한 것으로 고수준 모듈로 인프라스트럭처 영역에 속한다.

그림 2.19 리포지터리 인터페이스는 도메인 모델 영역에 속하며, 실제 구현 클래스는 인프라스트럭처 영역에 속한다.

응용 서비스와 리포지터리는 밀접한 연관이 있다.

  • 응용 서비스는 필요한 도메인 객체를 구하거나 저장할 때 리포지터리를 사용한다.

  • 응용 서비스는 트랜잭션을 관리하는데, 트랜잭션 처리는 리포지터리 구현 기술에 영향을 받는다.

인프라스트럭처 개요

인프라스트럭처는 표현 영역, 응용 영역, 도메인 영역을 지원한다. DIP에서 언급한 것처럼 도메인 영역과 응용 영역에서 인프라스트럭처의 기능을 직접 사용하는 것보다 이 두영역에 정의한 인터페이스를 인프라스트럭처 영역에서 구현하는 것이 시스템을 더 유연하고 테스트하기 쉽게 만들어준다.

그러나 응용 영역과 도메인 영역이 이프라스트럭처에 대한 의존을 완전히 갖지 않도록 시도하는 것은 자칫 구현을 복잡하고 어렵게 만들 수 있다. 좋은 예가 스프링의 @Transactional 애노테이션이다. @Transactional을 사용하면 한줄로 트래잭션을 처리할 수 있는데 코드에서 스프링에 대한 의존을 없애려면 복잡한 스프링 설정을 사용해야 한다. 이처럼 의존은 없앴지만 특별히 테스트를 더 쉽게 할 수 있다거나 유연함을 증가시켜주지 못한다.

모듈 구성

패키지 구성 규칙에 한 개의 정답만 존재하는 것은 아니지만 영역별로 모듈이 위치할 패키지를 구성할 수 있을 것이다. 여기서 com.myshop은 예시로 든 패키지이다. domain 모듈은 도메인에 속한 애그리거트를 기준으로 다시 패키지를 구성한다. 예를 들어, 카탈로그 하위 도메인을 위한 도메인은 상품 애그리거트와 카테고리 애그리거트로 구성된다고 할 경우 아래와 같이 domain을 두 개의 하위 패키지로 구성할 수 있다.

그림 2.22 도메인 크면 하위 도메인별로 모듈을 나눈다.

도메인이 복잡하면 도메인 모델과 도메인 서비스를 다음과 같이 별도 패키지에 위치시킬 수도 있다.

  • com.myshop.order.domain.order : 애그리거트 위치

  • com.myshop.order.doamin.service : 도메인 서비스 위치

그림 2.23 하위 도메인을 하위 패키지로 구성한 모듈 구조

응용 서비스도 다음과 같이 도메인 별로 패키지를 구분할 수 있다.

  • com.myshop.catalog.application.product

  • com.myshop.catalog.application.category

모듈 구조를 얼마나 세분화해야 하는지에 대해 정해진 규칙은 없다. 단지, 한 패키지에 너무 많은 타입이 몰려서 코드를 찾을 때 불편한 정도만 아니면 된다. (필자는 개인적으로 한 패키지에 가능하면 10개 미만으로 타입 개수를 유지하려고 노력한다. 이를 넘어가면 모듈을 분리하는 시도를 해본다)