🚀
Incheol's TECH BLOG
  • Intro
  • Question & Answer
    • JAVA
      • JVM
      • String, StringBuffer, StringBuilder
      • JDK 17일 사용한 이유(feat. JDK 8 이후 훑어보기)
      • 스택 오버 플로우(SOF)
      • 블럭킹 | 논블럭킹 | 동기 | 비동기
      • 병렬처리를 이용한 이미지 리사이즈 개선
      • heap dump 분석하기 (feat. OOM)
      • G1 GC vs Z GC
      • JIT COMPILER
      • ENUM
      • STATIC
      • Thread(쓰레드)
      • hashCode()와 equals()
      • JDK 8 특징
      • break 와 continue 사용
      • STREAM
      • Optional
      • 람다와 클로저
      • Exception(예외)
      • Garbage Collector
      • Collection
      • Call by Value & Call by Reference
      • 제네릭(Generic)
    • SPRING
      • Spring 특징
      • N+1 문제
      • 테스트 코드 어디까지 알아보고 오셨어요?
      • 테스트 코드 성능 개선기
      • RestTemplate 사용시 주의사항
      • 동시성 해결하기(feat. TMI 주의)
      • redisson trylock 내부로직 살펴보기
      • DB 트래픽 분산시키기(feat. Routing Datasource)
      • OSIV
      • @Valid 동작 원리
      • mybatis @Builder 주의사항
      • 스프링 클라우드 컨피그 갱신 되지 않는 이슈(feat. 서비스 디스커버리)
      • ImageIO.read 동작하지 않는 경우
      • 카프카 transaction 처리는 어떻게 해야할까?
      • Spring Boot 특징
      • Spring 5 특징
      • JPA vs MyBatis
      • Filter와 Interceptor
      • 영속성 컨텍스트(Persistence Context)
      • @Transactional
      • @Controlleradvice, @ExceptionHandler
      • Spring Security
      • Dispatcher Servlet
      • @EnableWebMvc
      • Stereo Type(스테레오 타입)
      • AOP
      • JPA Repository 규칙
    • DATABASE
      • Database Index
      • SQL vs NoSQL
      • DB 교착상태
      • Isolation level
      • [MySQL] 이모지 저장은 어떻게 하면 좋을까?
      • SQL Hint
      • JOIN
    • INFRA
      • CLOUD COMPUTING
      • GIT
      • DOCKER
      • 카프카 찍먹하기 1부
      • 카프카 찍먹하기 2부 (feat. 프로듀서)
      • 카프카 찍먹하기 3부 (feat. 컨슈머)
      • JENKINS
      • POSTMAN
      • DNS 동작 원리
      • ALB, NLB,ELB 차이는?
      • 카프카 파티션 주의해서 사용하자
      • DEVOPS
      • JWT
      • OSI 7 Layer
      • MSA
      • 서비스 디스커버리는 어떻게 서비스 등록/해제 하는걸까?
      • 핀포인트 사용시 주의사항!! (feat 로그 파일 사이즈)
      • AWS EC2 도메인 설정 (with ALB)
      • ALB에 SSL 설정하기(feat. ACM)
      • 람다를 활용한 클라우드 와치 알림 받기
      • AWS Personalize 적용 후기… 😰
      • CloudFront를 활용한 S3 성능 및 비용 개선
    • ARCHITECTURE
      • 객체지향과 절차지향
      • 상속보단 합성
      • SOLID 원칙
      • 캡슐화
      • DDD(Domain Driven Design)
    • COMPUTER SCIENCE
      • 뮤텍스와 세마포어
      • Context Switch
      • REST API
      • HTTP HEADER
      • HTTP METHOD
      • HTTP STATUS
    • CULTURE
      • AGILE(Feat. 스크럼)
      • 우리는 성장 할수 있을까? (w. 함께 자라기)
      • Expert Beginner
    • SEMINAR
      • 2022 INFCON 후기
        • [104호] 사이드 프로젝트 만세! - 기술만큼 중요했던 제품과 팀 성장기
        • [102호] 팀을 넘어서 전사적 협업 환경 구축하기
        • [103호] 코드 리뷰의 또 다른 접근 방법: Pull Requests vs. Stacked Changes
        • [105호] 실전! 멀티 모듈 프로젝트 구조와 설계
        • [105호] 지금 당장 DevOps를 해야 하는 이유
        • [102호] (레거시 시스템) 개편의 기술 - 배달 플랫폼에서 겪은 N번의 개편 경험기
        • [102호] 서버비 0원, 클라우드 큐 도입으로 해냈습니다!
  • STUDY
    • 오브젝트
      • 1장 객체, 설계
      • 2장 객체지향 프로그래밍
      • 3장 역할, 책임, 협력
      • 4장 설계 품질과 트레이드 오프
      • 5장 책임 할당하기
      • 6장 메시지와 인터페이스
      • 7징 객체 분해
      • 8장 의존성 관리하기
      • 9장 유연한 설계
      • 10장 상속과 코드 재사용
      • 11장 합성과 유연한 설계
      • 12장 다형성
      • 13장 서브클래싱과 서브타이핑
      • 14장 일관성 있는 협력
      • 15장 디자인 패턴과 프레임워크
      • 마무리
    • 객체지향의 사실과 오해
      • 1장 협력하는 객체들의 공동체
      • 2장 이상한 나라의 객체
      • 3장 타입과 추상화
      • 4장 역할, 책임, 협력
    • JAVA ORM JPA
      • 1장 JPA 소개
      • 2장 JPA 시작
      • 3장 영속성 관리
      • 4장 엔티티 매핑
      • 5장 연관관계 매핑 기초
      • 6장 다양한 연관관계 매핑
      • 7장 고급 매핑
      • 8장 프록시와 연관관계 관리
      • 9장 값 타입
      • 10장 객체지향 쿼리 언어
      • 11장 웹 애플리케이션 제작
      • 12장 스프링 데이터 JPA
      • 13장 웹 애플리케이션과 영속성 관리
      • 14장 컬렉션과 부가 기능
      • 15장 고급 주제와 성능 최적화
      • 16장 트랜잭션과 락, 2차 캐시
    • 토비의 스프링 (3.1)
      • 스프링의 이해와 원리
        • 1장 오브젝트와 의존관계
        • 2장 테스트
        • 3장 템플릿
        • 4장 예외
        • 5장 서비스 추상화
        • 6장 AOP
        • 8장 스프링이란 무엇인가?
      • 스프링의 기술과 선택
        • 5장 AOP와 LTW
        • 6장 테스트 컨텍스트 프레임워크
    • 클린코드
      • 1장 깨끗한 코드
      • 2장 의미 있는 이름
      • 3장 함수
      • 4장 주석
      • 5장 형식 맞추기
      • 6장 객체와 자료 구조
      • 9장 단위 테스트
    • 자바 트러블슈팅(with scouter)
      • CHAP 01. 자바 기반의 시스템에서 발생할 수 있는 문제들
      • CHAP 02. scouter 살펴보기
      • CHAP 03. scouter 설정하기(서버 및 에이전트)
      • CHAP 04. scouter 클라이언트에서 제공하는 기능들
      • CHAP 05. scouter XLog
      • CHAP 06. scouter 서버/에이전트 플러그인
      • CHAP 07. scouter 사용 시 유용한 팁
      • CHAP 08. 스레드 때문에(스레드에서) 발생하는 문제들
      • CHAP 09. 스레드 단면 잘라 놓기
      • CHAP 10. 잘라 놓은 스레드 단면 분석하기
      • CHAP 11. 스레드 문제
      • CHAP 12. 메모리 때문에 발생할 수 있는 문제들
      • CHAP 13. 메모리 단면 잘라 놓기
      • CHAP 14. 잘라 놓은 메모리 단면 분석하기
      • CHAP 15. 메모리 문제(Case Study)
      • CHAP 24. scouter로 리소스 모니터링하기
      • CHAP 25. 장애 진단은 이렇게 한다
      • 부록 A. Fatal error log 분석
      • 부록 B. 자바 인스트럭션
    • 테스트 주도 개발 시작하기
      • CHAP 02. TDD 시작
      • CHAP 03. 테스트 코드 작성 순서
      • CHAP 04. TDD/기능 명세/설계
      • CHAP 05. JUnit 5 기초
      • CHAP 06. 테스트 코드의 구성
      • CHAP 07. 대역
      • CHAP 08. 테스트 가능한 설계
      • CHAP 09. 테스트 범위와 종류
      • CHAP 10. 테스트 코드와 유지보수
      • 부록 A. Junit 5 추가 내용
      • 부록 C. Mockito 기초 사용법
      • 부록 D. AssertJ 소개
    • KOTLIN IN ACTION
      • 1장 코틀린이란 무엇이며, 왜 필요한가?
      • 2장 코틀린 기초
      • 3장 함수 정의와 호출
      • 4장 클래스, 객체, 인터페이스
      • 5장 람다로 프로그래밍
      • 6장 코틀린 타입 시스템
      • 7장 연산자 오버로딩과 기타 관례
      • 8장 고차 함수: 파라미터와 반환 값으로 람다 사용
      • 9장 제네릭스
      • 10장 애노테이션과 리플렉션
      • 부록 A. 코틀린 프로젝트 빌드
      • 부록 B. 코틀린 코드 문서화
      • 부록 D. 코틀린 1.1과 1.2, 1.3 소개
    • KOTLIN 공식 레퍼런스
      • BASIC
      • Classes and Objects
        • Classes and Inheritance
        • Properties and Fields
    • 코틀린 동시성 프로그래밍
      • 1장 Hello, Concurrent World!
      • 2장 코루틴 인 액션
      • 3장 라이프 사이클과 에러 핸들링
      • 4장 일시 중단 함수와 코루틴 컨텍스트
      • 5장 이터레이터, 시퀀스 그리고 프로듀서
      • 7장 스레드 한정, 액터 그리고 뮤텍스
    • EFFECTIVE JAVA 3/e
      • 객체 생성과 파괴
        • 아이템1 생성자 대신 정적 팩터리 메서드를 고려하라
        • 아이템2 생성자에 매개변수가 많다면 빌더를 고려하라
        • 아이템3 private 생성자나 열거 타입으로 싱글턴임을 보증하라
        • 아이템4 인스턴스화를 막으려거든 private 생성자를 사용하라
        • 아이템5 자원을 직접 명시하지 말고 의존 객체 주입을 사용하라
        • 아이템6 불필요한 객체 생성을 피하라
        • 아이템7 다 쓴 객체 참조를 해제하라
        • 아이템8 finalizer와 cleaner 사용을 피하라
        • 아이템9 try-finally보다는 try-with-resources를 사용하라
      • 모든 객체의 공통 메서드
        • 아이템10 equals는 일반 규약을 지켜 재정의하라
        • 아이템11 equals를 재정의 하려거든 hashCode도 재정의 하라
        • 아이템12 toString을 항상 재정의하라
        • 아이템13 clone 재정의는 주의해서 진행해라
        • 아이템14 Comparable을 구현할지 고려하라
      • 클래스와 인터페이스
        • 아이템15 클래스와 멤버의 접근 권한을 최소화하라
        • 아이템16 public 클래스에서는 public 필드가 아닌 접근자 메서드를 사용하라
        • 아이템17 변경 가능성을 최소화하라
        • 아이템18 상속보다는 컴포지션을 사용하라
        • 아이템19 상속을 고려해 설계하고 문서화하라. 그러지 않았다면 상속을 금지하라
        • 아이템20 추상 클래스보다는 인터페이스를 우선하라
        • 아이템21 인터페이스는 구현하는 쪽을 생각해 설계하라
        • 아이템22 인터페이스 타입을 정의하는 용도로만 사용하라
        • 아이템23 태그 달린 클래스보다는 클래스 계층구조를 활용하라
        • 아이템24 멤버 클래스는 되도록 static으로 만들라
        • 아이템25 톱레벨 클래스는 한 파일에 하나만 담으라
      • 제네릭
        • 아이템26 로 타입은 사용하지 말라
        • 아이템27 비검사 경고를 제거하라
        • 아이템28 배열보다는 리스트를 사용하라
        • 아이템29 이왕이면 제네릭 타입으로 만들라
        • 아이템30 이왕이면 제네릭 메서드로 만들라
        • 아이템31 한정적 와일드카드를 사용해 API 유연성을 높이라
        • 아이템32 제네릭과 가변인수를 함께 쓸 때는 신중하라
        • 아이템33 타입 안전 이종 컨테이너를 고려하라
      • 열거 타입과 애너테이션
        • 아이템34 int 상수 대신 열거 타입을 사용하라
        • 아이템35 ordinal 메서드 대신 인스턴스 필드를 사용하라
        • 아이템36 비트 필드 대신 EnumSet을 사용하라
        • 아이템37 ordinal 인덱싱 대신 EnumMap을 사용하라
        • 아이템38 확장할 수 있는 열거 타입이 필요하면 인터페이스를 사용하라
        • 아이템 39 명명 패턴보다 애너테이션을 사용하라
        • 아이템40 @Override 애너테이션을 일관되게 사용하라
        • 아이템41 정의하려는 것이 타입이라면 마커 인터페이스를 사용하라
      • 람다와 스트림
        • 아이템46 스트림에는 부작용 없는 함수를 사용하라
        • 아이템47 반환 타입으로는 스트림보다 컬렉션이 낫다
        • 아이템48 스트림 병렬화는 주의해서 적용하라
      • 메서드
        • 아이템49 매개변수가 유효한지 검사하라
        • 아이템50 적시에 방어적 본사본을 만들라
        • 아이템53 가변인수는 신중히 사용하라
        • 아이템 54 null이 아닌, 빈 컬렉션이나 배열을 반환하라
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
      • 일반적인 프로그래밍 원칙
        • 아이템56 공개된 API 요소에는 항상 문서화 주석을 작성하라
        • 아이템57 지역변수의 범위를 최소화하라
        • 아이템 60 정확한 답이 필요하다면 float와 double은 피하라
      • 예외
        • 아이템 73 추상화 수준에 맞는 예외를 던지라
        • 아이템 74 메서드가 던지는 모든 예외를 문서화하라
      • 동시성
        • 아이템78 공유 중인 가변 데이터는 동기화해 사용하라
        • 아이템79 과도한 동기화는 피하라
        • 아이템 80 스레드보다는 실행자, 태스크, 스트림을 애용하라
      • 직렬화
        • 아이템 87 커스텀 직렬화 형태를 고려해보라
    • Functional Programming in Java
      • Chap 01. 헬로, 람다 표현식
      • Chap 02. 컬렉션의 사용
      • Chap 03. String, Comparator, 그리고 filter
      • Chap 04. 람다 표현식을 이용한 설계
      • CHAP 05. 리소스를 사용한 작업
      • CHAP 06. 레이지
      • CHAP 07. 재귀 호출 최적화
      • CHAP 08. 람다 표현식의 조합
      • CHAP 09. 모든 것을 함께 사용해보자
      • 부록 1. 함수형 인터페이스의 집합
      • 부록 2. 신택스 오버뷰
    • 코틀린 쿡북
      • 2장 코틀린 기초
      • 3장 코틀린 객체지향 프로그래밍
      • 4장 함수형 프로그래밍
      • 5장 컬렉션
      • 6장 시퀀스
      • 7장 영역 함수
      • 9장 테스트
      • 10장 입력/출력
      • 11장 그 밖의 코틀린 기능
    • DDD START!
      • 1장 도메인 모델 시작
      • 2장 아키텍처 개요
      • 3장 애그리거트
      • 4장 리포지터리와 모델구현(JPA 중심)
      • 5장 리포지터리의 조회 기능(JPA 중심)
      • 6장 응용 서비스와 표현 영역
      • 7장 도메인 서비스
      • 8장 애그리거트 트랜잭션 관리
      • 9장 도메인 모델과 BOUNDED CONTEXT
      • 10장 이벤트
      • 11장 CQRS
    • JAVA 8 IN ACTION
      • 2장 동작 파라미터화 코드 전달하기
      • 3장 람다 표현식
      • 4장 스트림 소개
      • 5장 스트림 활용
      • 6장 스트림으로 데이터 수집
      • 7장 병렬 데이터 처리와 성능
      • 8장 리팩토링, 테스팅, 디버깅
      • 9장 디폴트 메서드
      • 10장 null 대신 Optional
      • 11장 CompletableFuture: 조합할 수 있는 비동기 프로그래밍
      • 12장 새로운 날짜와 시간 API
      • 13장 함수형 관점으로 생각하기
      • 14장 함수형 프로그래밍 기법
    • 객체지향과 디자인패턴
      • 객체 지향
      • 다형성과 추상 타입
      • 재사용: 상속보단 조립
      • 설계 원칙: SOLID
      • DI와 서비스 로케이터
      • 주요 디자인 패턴
        • 전략패턴
        • 템플릿 메서드 패턴
        • 상태 패턴
        • 데코레이터 패턴
        • 프록시 패턴
        • 어댑터 패턴
        • 옵저버 패턴
        • 파사드 패턴
        • 추상 팩토리 패턴
        • 컴포지트 패턴
    • NODE.JS
      • 1회차
      • 2회차
      • 3회차
      • 4회차
      • 6회차
      • 7회차
      • 8회차
      • 9회차
      • 10회차
      • 11회차
      • 12회차
      • mongoose
      • AWS란?
    • SRPING IN ACTION (5th)
      • Chap1. 스프링 시작하기
      • Chap 2. 웹 애플리케이션 개발하기
      • Chap 3. 데이터로 작업하기
      • Chap 4. 스프링 시큐리티
      • Chap 5. 구성 속성 사용하기
      • Chap 6. REST 서비스 생성하기
      • Chap 7. REST 서비스 사용하기
      • CHAP 8 비동기 메시지 전송하기
      • Chap 9. 스프링 통합하기
      • CHAP 10. 리액터 개요
      • CHAP 13. 서비스 탐구하기
      • CHAP 15. 실패와 지연 처리하기
      • CHAP 16. 스프링 부트 액추에이터 사용하기
    • 스프링부트 코딩 공작소
      • 스프링 부트를 왜 사용 해야 할까?
      • 첫 번째 스프링 부트 애플리케이션 개발하기
      • 구성을 사용자화 하기
      • 스프링부트 테스트하기
      • 액추에이터로 내부 들여다보기
    • ANGULAR 4
      • CHAPTER 1. A gentle introduction to ECMASCRIPT 6
      • CHAPTER 2. Diving into TypeScript
      • CHAPTER 3. The wonderful land of Web Components
      • CHAPTER 4. From zero to something
      • CHAPTER 5. The templating syntax
      • CHAPTER 6. Dependency injection
      • CHAPTER 7. Pipes
      • CHAPTER 8. Reactive Programming
      • CHAPTER 9. Building components and directives
      • CHAPTER 10. Styling components and encapsulation
      • CHAPTER 11. Services
      • CHAPTER 12. Testing your app
      • CHAPTER 13. Forms
      • CHAPTER 14. Send and receive data with Http
      • CHAPTER 15. Router
      • CHAPTER 16. Zones and the Angular magic
      • CHAPTER 17. This is the end
    • HTTP 완벽 가이드
      • 게이트웨이 vs 프록시
      • HTTP Header
      • REST API
      • HTTP Method 종류
        • HTTP Status Code
      • HTTP 2.x
  • REFERENCE
    • TECH BLOGS
      • 어썸데브블로그
      • NAVER D2
      • 우아한 형제들
      • 카카오
      • LINE
      • 스포카
      • 티몬
      • NHN
      • 마켓컬리
      • 쿠팡
      • 레진
      • 데일리 호텔
      • 지그재그
      • 스타일쉐어
      • 구글
      • 야놀자
    • ALGORITHM
      • 생활코딩
      • 프로그래머스
      • 백준
      • 알고스팟
      • 코딜리티
      • 구름
      • 릿코드
Powered by GitBook
On this page
  • 람다 식과 멤버 참조
  • 람다 소개: 코드 블록을 함수 인자로 넘기기
  • 람다와 컬렉션
  • 현재 영역에 있는 변수에 접근
  • 컬렉션 함수형 API
  • 필수적인 함수: filter와 map
  • all, any, count, find: 컬렉션에 술어 적용
  • flatMap과 flatten: 중첩된 컬렉션 안의 원소 처리
  • 지연 계산(lazy) 컬렉션 연산
  • 시퀀스 연산 실행: 중간 연산과 최종 연산
  • 자바 함수형 인터페이스 활용
  • 자바 메소드에 람다를 인자로 전달
  • SAM 생성자: 람다를 함수형 인터페이스로 명시적으로 변경
  • 수신 객체 지정 람다: with와 apply
  • with 함수
  • apply 함수
  • 요약

Was this helpful?

  1. STUDY
  2. KOTLIN IN ACTION

5장 람다로 프로그래밍

KOTLIN IN ACTION 5장을 요약한 내용입니다.

람다 식과 멤버 참조

람다 소개: 코드 블록을 함수 인자로 넘기기

클래스를 선언하고 그 클래스의 인스턴스를 함수에 넘기는 대신 함수형 언어에서는 함수를 직접 다른 함수에 전달할 수 있다. 람다 식을 사용하면 코드가 더욱 더 간결해진다. 람다 식을 사용하면 함수를 선언할 필요가 없고 코드 블록을 직접 함수의 인자로 전달할 수 있다.

람다와 컬렉션

코드에서 중복을 제거하는 것은 프로그래밍 스타일을 개선하는 중요한 방법 중 하나다. 람다가 없다면 컬렉션을 편리하게 처리할 수 있는 좋은 라이브러리를 제공하기 힘들다.


data class Person(val name: String, val age: Int)

/* Java */
fun findTheOldest(people: List<Person>) {
    var maxAge = 0
    var theOldest: Person? = null
    for (person in people) {
        if (person.age > maxAge) {
            maxAge = person.age
            theOldest = person
        }
    }
    println(theOldest)
}

fun main(args: Array<String>) {
    val people = listOf(Person("Alice", 29), Person("Bob", 31))
    findTheOldest(people)
}

/* Kotlin */
>>> val people = listOf(Person("Alice", 29), Person("Bob", 31))
>>> println(people.maxBy { it.age })
Person(name=Bob, age=31)

이런 식으로 단지 함수나 프로퍼티를 반환하는 역할을 수행하는 람다는 멤버 참조로 대치할 수 있다. 람다나 멤버 참조를 인자로 받는 함수를 통해 개선한 코드는 더 짧고 더 이해하기 쉽다.

현재 영역에 있는 변수에 접근

자바 메소드 안에서 무명 내부 클래스를 정의할 때메소드의로컬 변수를 무명 내부 클래스에서 사용할 수 있다.

다음 리스트는 메시지의 목록을 받아 모든 메시지에 똑같은 접두사를 붙여서 출력해준다.

fun printMessagesWithPrefix(messages: Collection<String>, prefix: String) {
    messages.forEach {
        println("$prefix $it")
    }
}

코틀린에서는 자바와 달리 람다에서 람다 밖 함수에 있는 파이널이 아닌 변수에 접근할 수 있고, 그 변수를 변경할 수도 있다.

fun printProblemCounts(responses: Collection<String>) {
    var clientErrors = 0
    var serverErrors = 0
    responses.forEach {
        if (it.startsWith("4")) {
            clientErrors++
        } else if (it.startsWith("5")) {
            serverErrors++
        }
    }
    println("$clientErrors client errors, $serverErrors server errors")
}

어떻게 그런 동작이 가능할까?

파이널 변수를 포획한 경우에는 람다 코드를 변수 값과 함께 저장한다. 파이널이 아닌 변수를 포획할 경우에는 변수를 특별한 래퍼로 감싸서 나중에 변경하거나 읽을 수 있게 한 다음, 래퍼에 대한 참조를 람다 코드와 함께 저장한다.

한 가지 꼭 알아둬야 할 함정이 있다. 람다를 이벤트 핸들러나다른 비동기적으로 실행되는 코드로 활용하는 경우 함수 호출이 끝난 다음에 로컬 변수가 변경될 수도 있다.

fun tryToCountButtonClicks(button: Button) : Int {
		var clicks = 0
		button.onClick { clicks++ }
		return clicks
}

onClick 핸들러는 호출될 때마다 clicks의 값을 증가시키지만 그 값의 변경을 관찰할 수는없다. 핸들러는 tryToCountButtonClicks가 clicks를 반환한 다음에 호출되기 때문이다.

컬렉션 함수형 API

필수적인 함수: filter와 map

filter 함수는 컬렉션에서 원치 않는 원소를 제거한다. 하지만 filter는 원소를 변환할 수는 없다. 원소를 변환하려면 map 함수를 사용해야 한다. map 함수는 주어진 람다를 컬렉션의 각 원소에 적용한 결과를 모아서 새 컬렉션을 만든다.

fun main(args: Array<String>) {
    val people = listOf(Person("Alice", 29), Person("Bob", 31))
    println(people.filter { it.age > 30 })
}

fun main(args: Array<String>) {
    val people = listOf(Person("Alice", 29), Person("Bob", 31))
    println(people.map { it.name })
}

fun main(args: Array<String>) {
    val numbers = mapOf(0 to "zero", 1 to "one")
    println(numbers.mapValues { it.value.toUpperCase() })
}

all, any, count, find: 컬렉션에 술어 적용

컬렉션에 대해 자주 수행하는 연산으로 컬렉션의 모든 원소가 어떤 조건을 만족하는지 판단하는 연산이 있다. 코틀린에서는 all과 any가 이런 연산이다.

data class Person(val name: String, val age: Int)

val canBeInClub27 = { p: Person -> p.age <= 27 }

fun main(args: Array<String>) {
    val people = listOf(Person("Alice", 27), Person("Bob", 31))
    println(people.all(canBeInClub27))
}

flatMap과 flatten: 중첩된 컬렉션 안의 원소 처리

flatMap 함수는 먼저 인자로 주어진 람다를 컬렉션의 모든 객체에 적용하고 람다를 적용한 결과 얻어지는 여러리스트를 한 리스트로 한데 모은다.

fun main(args: Array<String>) {
    val strings = listOf("abc", "def")
    println(strings.flatMap { it.toList() })
}
// result
[a, b, c, d, e, f]

fun main(args: Array<String>) {
    val books = listOf(Book("Thursday Next", listOf("Jasper Fforde")),
                       Book("Mort", listOf("Terry Pratchett")),
                       Book("Good Omens", listOf("Terry Pratchett",
                                                 "Neil Gaiman")))
    println(books.flatMap { it.authors }.toSet())
}
// result
[Jasper Fforde, Terry Pratchett, Neil Gaiman]

컬렉션을 다루는 코드를 작성할 경우에는 원하는 바를 어떻게 일반적인 변환을 사용해 표현할 수 있는지 생각해보고 그런 변환을 제공하는 라이브러리 함수가 있는지 살펴보라.

지연 계산(lazy) 컬렉션 연산

map이나 filter 같은 몇 가지 컬렉션 함수를 살펴봤다. 그런 함수는 결과 컬렉션을 즉시 생성한다. 이는 컬렉션 함수를 연쇄하면 매 단계마다 계산 중간 결과를 새로운 컬렉션에 임시로 담는다는 뜻이다. 시퀀스(sequence)를 사용하면 중간 임시 컬렉션을 사용하지 않고도 컬렉션 연산을 연쇄할 수 있다.

fun main(args: Array<String>) {
    listOf(1, 2, 3, 4).asSequence() // 원본 컬렉션을시퀀스로 변환한다. 
            .map { print("map($it) "); it * it } // 시퀀스도 컬렉션과 똑같은 API를 제공한다. 
            .filter { print("filter($it) "); it % 2 == 0 }
            .toList() // 결과 시퀀스를 다시 리스트로 변환한다. 
}

코틀린 지연 계산 시퀀스는 Sequence 인터페이스에서 시작한다. Sequence 안에는 iterator라는 단 하나의 메소드가 있다. 그 메소드를 통해 시퀀스로부터 원소 값을 얻을 수 있다.

왜 시퀀스를 다시 컬렉션으로 되돌려야 할까?

컬렉션보다 시퀀스가 훨씬 더 낫다면 그냥 시퀀스를 쓰는 편이 나을수도 있다. 하지만 "항상 그렇지는 않다". 시퀀스의 원소를 차례로 이터페이션해야 한다면 시퀀스를 직접 써도 된다. 하지만 시퀀스 원소를 인덱스를 사용해 접근하는 등의 다른 API 메소드가 필요하다면 시퀀스를 리스트로 변환해야 한다.

시퀀스 연산 실행: 중간 연산과 최종 연산

시퀀스에 대한 연산은 중간 연산과 최종 연산으로 나뉜다. 중간 연산은 다른 시퀀스를 반환한다. 그 시퀀스는 최초 시퀀스의 원소를 변환하는 방법을 안다. 최종 연산은 결과를 반환한다.

fun main(args: Array<String>) {
    listOf(1, 2, 3, 4).asSequence()
            .map { print("map($it) "); it * it }
            .filter { print("filter($it) "); it % 2 == 0 }
            .toList()
}

// 결과
>>> map(1) filter(1) map(2) filter(4) map(3) filter(9) map(4) filter(16)

시퀀스의 경우 모든 연산은 각 원소에 대해 순차적으로 적용된다. 즉 첫 번째 원소가 처리되고, 다시 두 번째 원소가 처리되며, 이런 처리가 모든 원소에 대해 적용된다.

자바 스트림과 코틀린 시퀀스 비교

자바 8을 채택하면 현재 코틀린 컬렉션과 시퀀스에서 제공하지 않는 중요한 기능을 사용할 수 있다. 바로 스트림 연산(map과 filter 등)을 여러CPU에서 병렬적으로 실행하는 기능이 그것이다.

자바 함수형 인터페이스 활용

자바 메소드에 람다를 인자로 전달

함수형 인터페이스를 인자로 원하는 자바 메소드에 코틀린 람다를 전달할 수 있다.

postponComputation(1000, object : Runnable { // 객체 식을 함수형 인터페이스 구현으로 넘긴다. 
		override fun run() {
				println(42)
		}
})

postponComputation(1000) { println(42) } // 프로그램 전체에서 Runnable의 인스턴스는 단 하나만 만들어진다. 

람다와 무명 객체 사이에는 차이가 있다. 객체를 명시적으로 선언하는 경우 메소드를 호출할 때마다 새로운 객체가 생성된다. 람다는 다르다. 정의가 들어있는 함수의 변수에 접근하지 않는 람다에 대응하는 무명 객체를 메소드를 호출할 때마다 반복 사용한다.

그러나 람다가 주변 영역의 변수를 포획한다면 매 호출마다 같은 인스턴스를 사용할 수 없다. 그런 경우 컴파일러는 매번 주변 영역의 변수를 포획한 새로운 인스턴스를 생성해준다.

fun handlerComputation(id: String) {
		postponeComputation(1000) { println(id) } // handlerComputation을 호출할 때마다 새로 Runnable 인스턴스를 만든다. 
}

람다의 자세한 구현

코틀린 1.0에서 인라인(inline) 되지 않은 모든 람다 식은 무명 클래스로 컴파일된다. 코틀린 1.1부터는 자바 8 바이트코드를 생성할 수 있지만 여전히 코틀린 1.0처럼 람다마다 별도의 클래스를 만들어낸다. 하지만 향후 별도의 클래스를 만들지 않고 자바 8부터 도입된 람다 기능을 활용한 바이트코드를 만들어낼 계획이다. 람다가 변수를 포획하면 무명 클래스 안에 포획한 변수를 저장하는 필드가 생기며, 매 호출마다 그 무명 클래스의 인스턴스를 새로 만든다. 하지만 포획하는 변수가 없는 람다에 대해서는 인스턴스가 단 하나만 생긴다. 람다식의 바이트코드를 디컴파일(decompile)하면 확인 할 수 있다.

코틀린 inline으로 표시된 코틀린 함수에게 람다를 넘기면 아무런 무명 클래스도 만들어지지 않는다. 대부분의 코틀린 확장 함수들은 inline 표시가 붙어있다. 이에 대해서는 8장에서 설명한다.

SAM 생성자: 람다를 함수형 인터페이스로 명시적으로 변경

SAM 생성자는 람다를 함수형 인터페이스의 인스턴스로 변환할 수 있게 컴파일러가 자동으로 생성한 함수다. 컴파일러가 자동으로 람다를 함수형 인터페이스 무명 클래스로 바꾸지 못하는 경우 SAM 생성자를 사용할 수 있다.

fun createAllDoneRunnable(): Runnable {
    return Runnable { println("All done!") }
}

수신 객체 지정 람다: with와 apply

자바의 람다에는 없는 코틀린 람다의 독특한 기능이 있다. 그 기능은 바로 수신 객체를 명시하지 않고 람다의 본문 안에서 다른 객체의 메소드를 호출할 수 있게 하는 것이다. 그런 람다를 수신 객체 지정 람다라고 부른다.

with 함수

어떤 객체의 이름을 반복하지 않고도 그 객체에 대해 다양한 연산을 수행할 수 있다면 좋을 것이다. 다양한 언어가 그런 기능을 제공한다.

// with를 사용하지 않은 함수
fun alphabet(): String {
    val result = StringBuilder()
    for (letter in 'A'..'Z') {
         result.append(letter)
    }
    result.append("\\nNow I know the alphabet!")
    return result.toString()
}

// with를 사용하여 중복된 변수명을 제거한 함수 사용
fun alphabet(): String {
    val stringBuilder = StringBuilder()
    return with(stringBuilder) {
        for (letter in 'A'..'Z') {
            this.append(letter)
        }
        append("\\nNow I know the alphabet!")
        this.toString()
    }
}

with 함수는 첫 번째 인자로 받은 객체를 두 번째 인자로 받은 람다의 수신 객체로 만든다. 인자로 받은 람다 본문에서는 this를 사용해 그 수신 객체에 접근할 수 있다.

with가 반환하는 값은 람다 코드를 실행한 결과며, 그 결과는 람다 식의본문에 있는 마지막 식의 값이다. 하지만 때로는 람다의 결과 대신 수신 객체가 필요한 경우도 있다. 그럴 때는 apply 라이브러리 함수를 사용할 수 있다.

apply 함수

apply 함수는 거의 with와 동일하다. 유일한 차이란 apply는 항상 자신에게 전달된 객체(즉 수신 객체)를 반환한다는 점뿐이다.

fun alphabet() = StringBuilder().apply {
    for (letter in 'A'..'Z') {
        append(letter)
    }
    append("\\nNow I know the alphabet!")
}.toString()

with와 apply는 수신 객체 지정 람다를 사용하는 일반적인 예제 중 하나다. 더 구체적인 함수를 비슷한 채턴으로 활용할 수 있다. 예를 들어 표준 라이브러리의 buildString 함수를 사용하면 alphabet 함수를 더 단순화할 수 있다.

fun alphabet() = buildString {
    for (letter in 'A'..'Z') {
        append(letter)
    }
    append("\\nNow I know the alphabet!")
}

buildString 함수는 StringBuilder를 활용해 String을 만드는 경우 사용할 수 있는 우아한 해법이다.

요약

  • 람다를 사용하면 코드 조각을 다른 함수에게 인자로 넘길 수 있다.

  • 코틀린에서는 람다가 함수 인자인 경우 괄호 밖으로 람다를 빼낼 수 있고, 람다의 인자가 단 하나뿐인 경우 인자 이름을 지정하지 않고 it이라는 디폴트 이름으로 부를 수 있다.

  • 람다 안에 있는 코드는 그 람다가 들어있는 바깥 함수의 변수를 읽거나 쓸 수 있다.

  • 메소드, 생성자, 프로퍼티의 이름 앞에 ::을 붙이면 각각에 대한 참조를 만들 수 있다. 그런 참조를 람다 대신 다른 함수에게 넘길 수 있다.

  • filter, map, all, any 등의 함수를 활용하면 컬렉션에 대한 대부분의 연산을 직접 원소를 이터페이션 하지 않고 수행할 수 있다.

  • 시퀀스를 사용하면 중간 결과를 담는 컬렉션을 생성하지 않고도 컬렉션에 대한 여러 연산을 조합할 수 있다.

  • 함수형 인터페이스(추상 메소드가 단 하나뿐인 SAM 인터페이스)를 인자로 받는 자바 함수를 호출할 경우 람다를 함수형 인터페이스 인자 대신 넘길 수 있다.

  • 수신 객체 지정 람다를 사용하면 람다 안에서 미리 정해둔 수신 객체의 메소드를 직접 호출할 수 있다.

  • 표준 라이브러리의 with 함수를 사용하면 어떤 객체에 대한 참조를 반복해서 언급하지 않으면서 그 객체의 메소드를 호출할 수 있다. apply를 사용하면 어떤 객체라도 빌더 스타일의 API를 사용해 생성하고 초기화할 수 있다.

Previous4장 클래스, 객체, 인터페이스Next6장 코틀린 타입 시스템

Last updated 4 years ago

Was this helpful?